
Unicenter®CA-OPS/MVS®

Unicenter CA-OPS/MVS
Event Management and Automation:

Getting Started

Student Guide

PV001

ED0537X1GSE

--PROPRIETARY AND CONFIDENTIAL INFORMATION--

These education materials and related computer software program (hereinafter referred to as the "Education Materials")
is for the end user’s informational purposes only and is subject to change or withdrawal by Computer Associates
International, Inc. ("CA") at any time.

These Education Materials may not be copied, transferred, reproduced, disclosed or distributed, in whole or in part,
without the prior written consent of CA. These Education Materials are proprietary information and a trade secret of
CA. Title to these Education Materials remains with CA, and these Education Materials are protected by the copyright
laws of the United States and international treaties. All authorized reproductions must be marked with this legend.

RESTRICTED RIGHTS LEGEND

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO THE END USER OR ANY THIRD PARTY
FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION,
INCLUDING WITHOUT LIMITATION, LOST PROFITS, BUSINESS INTERRUPTION, GOODWILL OR LOST
DATA, EVEN IF CA IS EXPRESSLY ADVISED OF SUCH LOSS OR DAMAGE.

THE USE OF ANY PRODUCT REFERENCED IN THIS DOCUMENTATION AND THIS DOCUMENTATION IS
GOVERNED BY THE END USER’S APPLICABLE LICENSE AGREEMENT.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with "Restricted Rights" as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2)
or DFARS Section 252.227.7013(c)(1)(ii) or applicable successor provisions.

 2005 Computer Associates International, Inc.
One Computer Associates Plaza, Islandia, NY 11788-7000
All rights reserved.

All trademarks, trade names, service marks or logos referenced herein belong to their respective companies.

Call Computer Associates technical services for any information not covered in this manual or the related publications.
In North America, see your Computer Associates Product Support Directory for the appropriate telephone number to
call for direct support, or you may call 1-800-645-3042 or 631-342-4683 and your call will be returned as soon as
possible.

Outside North America, contact your local Computer Associates technical support center for assistance.

Table of Contents

PV001 TOC - 1 Computer Associates

I Introduction
PV001 .
Course Objectives .
Agenda .

1 Unicenter CA-OPS/MVS Overview
Lesson Objectives .
Automation Today .
What Is Unicenter CA-OPS/MVS? .
Benefits of Unicenter CA-OPS/MVS .
Unicenter CA-OPS/MVS Architecture .
Essential Components .
RDF and SSM .
Application Interfaces .
Product Documentation .
Lesson Summary .
Lesson 1 Assessment .

2 Navigating OPSVIEW
Lesson Objectives .
OPSVIEW Basics .
OPSVIEW Primary Options Menu .
OPSLOG - Option 1 .
OPSLOG Browse .
OPSLOG Browse Profile .
OPSLOG Second Level Profile .
OPSLOG Current Profile ID .
Automation Analyzer - Option 7.2 .
Automation Analyzer Results .
Lesson Summary .
Lesson 2 Assessment .
Lesson 2 Activity .

3 Understanding Rules
Lesson Objectives .
AOF .
What Are AOF Rules? .
What Is an AOF Rule Set? .

I - 2
I - 3
I - 4

1 - 3
1 - 4
1 - 5
1 - 7
1 - 9

1 - 11
1 - 13
1 - 15
1 - 16
1 - 17

2 - 2
2 - 3
2 - 4
2 - 5
2 - 6
2 - 8

2 - 12
2 - 13
2 - 14
2 - 17
2 - 20
2 - 21
2 - 23

3 - 2
3 - 3
3 - 7
3 - 8

Table of Contents

PV001 TOC - 2 Computer Associates

Writing a Message Rule .
AOF Rule Sections .
AOF Rule Sections - Event Definition .
Event Definition Example .
AOF Rule Sections - Initialization .
Initialization Example .
AOF Rule Sections - Processing .
Processing Example .
AOF Rule Sections - Termination .
Termination Example .
Types of Rules .
Command Rule .
Command Rule Example 1 .
Command Rule Example 2 .
Message Rule .
Message Rule Example 1 .
Message Rule Example 2 .
Security Rule .
Security Rule Example 1 .
Security Rule Example 2 .
Time-of-Day Rule .
Time-of-Day Rule Examples .
Lesson Summary .
Lesson 3 Assessment .

4 AOF RETURN Statement
Lesson Objectives .
RETURN Statement .
How Rule Sections Process RETURN .
RETURN)INIT Example .
RETURN)PROC Examples .
RETURN)TERM Example .
Lesson Summary .

5 Using EasyRule
Lesson Objectives .
EasyRule .
Accessing EasyRule .

3 - 10
3 - 12
3 - 13
3 - 17
3 - 18
3 - 20
3 - 21
3 - 23
3 - 24
3 - 26
3 - 27
3 - 29
3 - 33
3 - 35
3 - 36
3 - 40
3 - 41
3 - 43
3 - 47
3 - 48
3 - 49
3 - 54

4 - 2
4 - 3
4 - 4
4 - 6
4 - 7
4 - 8
4 - 9

5 - 2
5 - 3
5 - 6

Table of Contents

PV001 TOC - 3 Computer Associates

Primary Panel .
Select Rule Type .
Main Menu .
Specify Event .
Create Rule Comments .
Final Options Menu .
View Results .
User Code Entry Points .
Specify Conditions .
Change Day .
Verify Message Wording .
Check Progress .
Specify an Action .
Track Occurrences .
Initialize .
Initialize Variables .
Limit Systems .
Is Rule Complete? .
Save .
EasyRule Help .
Lesson Summary .
Lesson 5 Activity .

6 Testing Rules
Lesson Objectives .
AOF Test Facility .
OPSVIEW Editors .
AOF Edit .
Enable Rule .
Select for Testing .
Specify Testing Criteria .
Test with Live Commands .
View Results .
Lesson Summary .
Lesson 6 Activity .

5 - 7
5 - 8
5 - 9

5 - 11
5 - 12
5 - 13
5 - 14
5 - 15
5 - 16
5 - 17
5 - 18
5 - 19
5 - 20
5 - 23
5 - 24
5 - 25
5 - 26
5 - 27
5 - 29
5 - 31

6 - 2
6 - 3
6 - 4
6 - 5
6 - 6

6 - 10
6 - 11
6 - 14
6 - 15
6 - 16

Table of Contents

PV001 TOC - 4 Computer Associates

7 REXX Basics
Lesson Objectives .
Standard REXX .
REXX EXECs .
Clauses .
Literal Strings .
Simple Variables .
Compound Variables .
Operators .
Instructions .
Built-in Functions .
A Good Reference .
OPS/REXX .
Similarities .
Differences .
Execution .
Lesson Summary .
Lesson 7 Assessment .

8 AOF Variables
Lesson Objectives .
AOF Variables .
What Are Variables? .
Types of Variables .
Dynamic Variables .
Dynamic Variable Example .
Static Variables .
Static Variable Example .
How Rules Process Simple Variables .
Event-Related Variables .
Event-Related Variable Example .
Local Variables .
Local Variable Example - Rule 1 .
Local Variable Example - Rule 2 .
Global Variables .
Global Variable Example - Rule 1 .
Global Variable Example - Rule 2 .
Temporary Variables .

7 - 2
7 - 3
7 - 4
7 - 5
7 - 9

7 - 10
7 - 11
7 - 13
7 - 16
7 - 28
7 - 32
7 - 33
7 - 35
7 - 37
7 - 39
7 - 41

8 - 2
8 - 4
8 - 5
8 - 6
8 - 8
8 - 9

8 - 11
8 - 12
8 - 14
8 - 19
8 - 20
8 - 22
8 - 23
8 - 24
8 - 27
8 - 28
8 - 29

Table of Contents

PV001 TOC - 5 Computer Associates

Temporary Variable Example .
Lesson Summary .
Lesson 8 Assessment .

9 OPS/REXX Host Environments
Lesson Objectives .
OPS/REXX Host Environments .
Types of Host Environments .
ADDRESS OPER .
ADDRESS OPER Keywords .
ADDRESS OPER Examples .
ADDRESS OSF .
ADDRESS OSF Example .
ADDRESS WTO .
ADDRESS WTO Examples .
Lesson Summary .
Lesson 9 Assessment .

10 OPS/REXX Built-in Functions
Lesson Objectives .
OPS/REXX Functions .
Types of Functions .
OPSDEV .
OPSDEV Output .
OPSINFO .
OPSINFO Example .
OPSTATUS .
OPSTATUS Output .
OPSTATUS Examples .
OPSVALUE .
OPSVALUE Examples .
Comprehensive Examples .
Lesson Summary .
Lesson 10 Assessment .
Lesson 10 Activity .
Final Activity .

A Solutions

8 - 30
8 - 33
8 - 34

9 - 2
9 - 3
9 - 4
9 - 6
9 - 8

9 - 10
9 - 12
9 - 14
9 - 15
9 - 19
9 - 22

10 - 2
10 - 3
10 - 5
10 - 9

10 - 11
10 - 12
10 - 20
10 - 21
10 - 23
10 - 24
10 - 26
10 - 36
10 - 39
10 - 42
10 - 43
10 - 45
10 - 48

Table of Contents

PV001 TOC - 6 Computer Associates

Notes:

Introduction

PV001 I - 1 Computer Associates

ca.com

Unicenter CA-OPS/MVS
Event Management and Automation:

Getting Started

Introduction

Introduction

PV001 I - 2 Computer Associates

I - 2

PV001

Getting Started
– 3 days

Audience
– Operations and systems personnel responsible for

operating and maintaining Unicenter CA-OPS/MVS
– Management personnel interested in learning more

about Unicenter CA-OPS/MVS features and
components

Prerequisites
– JCL, TSO, and ISPF familiarity
– Computer operations experience

Introduction

PV001 I - 3 Computer Associates

I - 3

Course Objectives

After this course, you will be able to:
Describe Unicenter CA-OPS/MVS functions
and components
Navigate within OPSVIEW panels
Write automation using EasyRule
Test the automation you have written
Describe the various tools that are available
within Unicenter CA-OPS/MVS for creating
specialized automation

Introduction

PV001 I - 4 Computer Associates

I - 4

Course Agenda

Day 1
1. Unicenter CA-OPS/MVS Overview
2. Navigating OPSVIEW
3. Understanding Rules
4. AOF RETURN Statement

Day 2
5. Using EasyRule
6. Testing Rules
7. REXX Basics

Introduction

PV001 I - 5 Computer Associates

I - 5

Course Agenda

Day 3
8. AOF Variables
9. OPS/REXX Host Environments
10. OPS/REXX Built-in Functions

(continued)

Introduction

PV001 I - 6 Computer Associates

Notes:

Lesson 1 - Unicenter CA-OPS/MVS Overview

PV001 1 - 1 Computer Associates

ca.com

Unicenter CA-OPS/MVS
Overview

Lesson 1

Lesson 1 - Unicenter CA-OPS/MVS Overview

PV001 1 - 2 Computer Associates

1 - 2

Lesson Objectives

After this lesson, you will be able to:
Describe the role of Unicenter CA-OPS/MVS
in automation today
Identify and describe Unicenter CA-OPS/MVS
functions and components

Lesson 1 - Unicenter CA-OPS/MVS Overview

PV001 1 - 3 Computer Associates

1 - 3

Automation Today
Unicenter

CA-OPS/MVS
Notification

Unicenter
Automation

Point

Unicenter
Event Manager

and Agents

Lesson 1 - Unicenter CA-OPS/MVS Overview

PV001 1 - 4 Computer Associates

1 - 4

What Is Unicenter CA-OPS/MVS?

What Is Unicenter CA-OPS/MVS?
Unicenter CA-OPS/MVS is a comprehensive automated systems operations product
for z/OS environments. It maximizes system availability, offers improved efficiency,
reduces errors and downtime, and increases productivity on all levels.

Unicenter CA-OPS/MVS is the leading automation product in the mainframe market
due to its dependable and efficient architecture, a powerful automation language, and
various facilities that are geared at enabling rapid automation development. Its
functionality provides infinite scalability to manage the smallest to the largest and
most complex data centers without complex programming.

Unicenter CA-OPS/MVS plays a key role in CA’s overall enterprise solution as a
powerful standalone tool for ensuring maximum availability of the z/OS platform, as
well as extending manageability and visibility in the enterprise.

Lesson 1 - Unicenter CA-OPS/MVS Overview

PV001 1 - 5 Computer Associates

1 - 5

Benefits of Unicenter CA-OPS/MVS

Message management
Improved operator efficiency
REXX-based automation language
User-friendly tools
Integrated testing facility
System and automation log
Integrated software interfaces

Benefits of Unicenter CA-OPS/MVS
Message management leading to productivity gain:

Highlight, make non-scrollable, route, reply to, and suppress messages.
Treating messages as system events that should be responded to as
installation policy dictates.
Correlating multiple messages to produce a coherent picture of system
status.

Improved operator efficiency by reducing human error:
With a single command, an operator can trigger a complex series of
commands that normally must be executed in a specific sequence.
Controls and security checks on existing commands.

User-friendly facility for building automation:
EasyRule is a powerful facility for building rules without programming.
Operators can quickly create the rules needed for automation by simply
filling in the blanks online.
Automation specialists can view the OPS/REXX code that is generated by
EasyRule. So while they build rules, they learn the REXX language.

Lesson 1 - Unicenter CA-OPS/MVS Overview

PV001 1 - 6 Computer Associates

Benefits of Unicenter CA-OPS/MVS (cont.)
User-friendly facility for building automation:

EasyRule is a powerful facility for building rules without programming.
Operators can quickly create the rules needed for automation by simply
filling in the blanks online.
Automation specialists can view the OPS/REXX code that is generated by
EasyRule. So while they build rules, they learn the REXX language.

Integrated testing facility:
Unicenter CA-OPS/MVS was designed to let you fully test automation
before putting it into production. You can test a rule or subset of rules, and
you can correct mistakes easily.

System and automation log:
Many sites fear that activity will slip “under the covers” as they automate
more. Unicenter CA-OPS/MVS guards against this by recording operational
events into its system log file, OPSLOG, which you can quickly browse
online. If they wish, users can interactively select messages associated
with a particular job or time range.

Integrated software interfaces:
External Product Interface (EPI) provides connectivity to all VTAM-based
applications that users want to control via automation. You can use this
interface, for instance, to request performance data from an online
performance monitor or to log on to CICS to verify the availability of an
application.

Lesson 1 - Unicenter CA-OPS/MVS Overview

PV001 1 - 7 Computer Associates

1 - 7

Unicenter CA-OPS/MVS Architecture

OPSOSF

ready

OPSOSF

ready

OPSOSF

ready

z/OS

Unicenter CA-OPS/MVS
Automated Operations Facility

(AOF)

Automation
Analyzer EasyRule OPS/REXX OPSLOG

Unicenter CA-OPS/MVS Architecture
Unicenter CA-OPS/MVS has a multiple address space architecture. The central
address space is called OPSMAIN. OPSMAIN is non-swappable. It is a formal z/OS
subsystem. It puts a subsystem control table (SSCT) on the SSCT chain. This
permits OPSMAIN to take advantage of the system exit points that z/OS provides.

Generally, OPSMAIN must be up for Unicenter CA-OPS/MVS facilities to be
operative. OPSMAIN is typically started by an MVS START command in a member of
the SYS1.PARMLIB data set. This means that the OPSMAIN address space can be
brought up before JES, providing automation functionality early in the startup
sequence.

One of Unicenter CA-OPS/MVS’s most powerful features is its ability to process
system events inline, or synchronously, via rules. This type of real-time automation is
extremely effective and is possible because Unicenter
CA-OPS/MVS rules execute in the address space in which an event occurs.

Lesson 1 - Unicenter CA-OPS/MVS Overview

PV001 1 - 8 Computer Associates

Unicenter CA-OPS/MVS Architecture (cont.)
The only types of automation you will not be able to perform within rules are those
that require some interaction or any type of wait. These types of automation need to
be performed by triggering an OPS/REXX program to a Unicenter
CA- OPS/MVS server via the ADDRESS OSF host environment. The following
diagram illustrates sending work to servers:

Lesson 1 - Unicenter CA-OPS/MVS Overview

PV001 1 - 9 Computer Associates

1 - 9

Essential Components

z/OS

Unicenter CA-OPS/MVS
Automated Operations Facility

(AOF)

Automation
Analyzer EasyRule OPS/REXX OPSLOG

OPSVIEW

OPSVIEW
OPSVIEW is the operations interface for Unicenter CA-OPS/MVS. Typically, to
interact with a computer system, you must type a long series of cryptic commands at
a console. In response, the system returns terse messages that usually do not
contain all the information that you need to manage the system. Such an environment
may be difficult to understand and use and is often error-prone.

OPSVIEW combines the variety of Unicenter CA-OPS/MVS facilities, the OPS/REXX
language, and the power of ISPF in an easy-to-use interface. OPSVIEW provides
panels for performing various z/OS system functions, and it is the primary vehicle for
controlling Unicenter CA-OPS/MVS itself. As its name suggests, OPSVIEW provides
you with an operational view of your z/OS systems.

Lesson 1 - Unicenter CA-OPS/MVS Overview

PV001 1 - 10 Computer Associates

Automated Operations Facility (AOF)
The Automated Operations Facility monitors system events and responds to them
automatically. With the AOF, you can program a response to a system event, such as
a message or the passage of time. AOF rules are specially structured OPS/REXX
programs that support automated operations by taking advantage of extensions made
to the OPS/REXX language. The AOF is the “heart” of Unicenter CA-OPS/MVS.

Automation Analyzer
The Automation Analyzer shows where your data center can benefit most from
automation. It studies message flow and then selects messages targeted for
suppression and allows users to automatically create message suppression or
response rules with a single keystroke.

EasyRule
EasyRule is a user-friendly, panel-driven facility that enables quick creation of
automation rules using fill-in-the-blank ISPF panels. No programming or previous
REXX knowledge is required. EasyRule generates SAA-compliant REXX code,
enabling users to learn the REXX language while creating automation.

OPS/REXX
REXX is the standard common language for all of IBM’s environments under its
Systems Application Architecture (SAA). CA chose REXX as the programming
language for Unicenter CA-OPS/MVS because it is the most powerful and easiest to
use command language available.

Unicenter CA-OPS/MVS comes with its own implementation of REXX called
“OPS/REXX.” OPS/REXX provides a simple but capable high-level language to write
operating system exits. It is a powerful, SAA-compliant programming language that
adds to standard REXX a set of extensions that automate and enhance the
productivity of z/OS operations. OPS/REXX is easy to understand and learn. If you
can program in any language, you can learn to program in OPS/REXX.

OPSLOG
The OPSLOG is a repository that is used for analysis of all system events, including
messages. OPSLOG has a browse facility that allows you to easily filter, search,
archive, display, and print log data. Through OPSLOG’s customized view of the event
log, users can quickly research and resolve problems. OPSLOG is a superior tool to
SYSLOG.

Lesson 1 - Unicenter CA-OPS/MVS Overview

PV001 1 - 11 Computer Associates

OPSLOG
The OPSLOG is a repository that is used for analysis of all system events, including
messages. OPSLOG has a browse facility that allows you to easily filter, search,
archive, display, and print log data. Through OPSLOG’s customized view of the event
log, users can quickly research and resolve problems. OPSLOG is a superior tool to
SYSLOG. Additionally, an OPSLOG WebView feature allows for OPSLOG access
from a Windows platform. This OPSLOG WebView GUI design brings all the
mainframe OPSLOG functionality to the workstation.

Lesson 1 - Unicenter CA-OPS/MVS Overview

PV001 1 - 12 Computer Associates

1 - 12

RDF and SSM

z/OS

Unicenter CA-OPS/MVS

Relational
Data

Framework
(RDF)

OPS/MVS
OPSVIEW

System
State

Manager
(SSM)

OPSVIEW

Relational Data Framework (RDF)
The Relational Data Framework facility lets you use Structured Query Language
(SQL) statements to manage the large amounts of data required by automation rules
and OPS/REXX programs. Instead of using large sets of variables, you can use the
RDF to:

Collect data.
Organize data into a relational table that contains rows and columns of
related information.
Retrieve related system information by selecting it from a particular row or
column.
Update data in relational tables.

CA chose SQL to manage automation data because of SQL’s wide popularity with
mainframe and PC users. The RDF consists of relational SQL tables plus a subset of
the SQL language that conforms to American National Standards Institute (ANSI)
standards. If you already know SQL, you should be able to use this subset of it right
away.

Lesson 1 - Unicenter CA-OPS/MVS Overview

PV001 1 - 13 Computer Associates

System State Manager (SSM)
System State Manager monitors and controls the status of the hardware and software
resources on your system. Using information from relational tables, System State
Manager maintains a simple model of the proper state of your system resources.
When the actual state of a resource deviates from that model (for instance, when a
tape drive that should be online goes offline), System State Manager takes the
necessary action to restore the resource to its proper state (for example, executes a
synchronous OPS/REXX rule or issues a z/OS command), providing proactive and
reactive state management of critical resources.

System State Manager’s Snapshot function simplifies the process of setting up
automation and maintaining started task resource data. The Snapshot function
captures data about started tasks on the system and uses it to create a started task
resource table. Using Snapshot greatly simplifies configuring and maintaining started
task data.

System State Manager’s Schedule Manager facility allows the desired state of
resources to be defined by date, day of week, or time of day. The schedule override
feature allows for the creation of temporary schedule overrides for managed
resources.

Lesson 1 - Unicenter CA-OPS/MVS Overview

PV001 1 - 14 Computer Associates

1 - 14

Application Interfaces

z/OS

Unicenter CA-OPS/MVS
External Product Interface

(EPI)

CICS Operations Facility
(COF)

IMS Operation Facility
(IOF)

UNIX System Services
(USS)

VTAM
APPL1

VTAM
APPL2

CICS

IMS

z/OS
UNIX

APPLs

Other
Product

Interfaces

Application Interfaces
Unicenter CA-OPS/MVS has numerous interfaces that allow you to perform various
functions. For a comprehensive list, refer to your product documentation. The
following interfaces are discussed in this lesson:

External Product Interface (EPI)
CICS Operations Facility (COF)
IMS Operation Facility (IOF)
UNIX System Services (USS)

Note: The COF and IOF are separately licensed optional facilities.

External Product Interface (EPI)
The External Product Interface permits Unicenter CA-OPS/MVS systems that are
running under VTAM to communicate with any VTAM application that supports IBM
3270-type virtual terminals. The EPI appears to VTAM as a real 3270 terminal that
can emulate any number of 3270-type virtual terminals that are connected to any
number of VTAM applications.

Lesson 1 - Unicenter CA-OPS/MVS Overview

PV001 1 - 15 Computer Associates

CICS Operations Facility (COF)
The CICS Operations Facility is an optional interface to CICS that extends the
capability for AOF rule processing to CICS messages, which are written only to CICS
transient data queues. This additional message traffic expands the number of events
that you can use to control CICS subsystems. Terminal failures, users’ logon and
logoff activities, and journal switches are just a few of the CICS events that will
become visible to AOF rules that are using the COF. With the COF interface installed,
a single copy of Unicenter CA-OPS/MVS can handle an unlimited number of CICS
regions.

IMS Operation Facility (IOF)
The IMS Operation Facility is an optional interface to IMS that extends automation
facilities to IMS. For example, you can write AOF rules that process IMS messages,
and you can use OPSVIEW to operate IMS. A single copy of Unicenter CA-OPS/MVS
can handle up to 32 copies of IMS at any combination of IBM-supported IMS levels.

UNIX System Services (USS)
The UNIX System Services provides comprehensive, bi-directional integration with
Unicenter CA-OPS/MVS. This provides for the management of the USS environment
on the z/OS platform. An additional USS process event feature provides system
automation events for the initialization and termination of USS processes.

Other Product Interfaces
Unicenter CA-OPS/MVS also includes comprehensive interfaces to other z/OS
software that you may be using, including:

Unicenter CA-7
Unicenter CA-Jobtrac
Unicenter CA-Scheduler
Unicenter CA-Netmaster
Unicenter CA-SYSVIEW
NetView
MVS/QuickRef
OMEGAMON

For details about these interfaces, refer to your product documentation.

Lesson 1 - Unicenter CA-OPS/MVS Overview

PV001 1 - 16 Computer Associates

1 - 16

Product Documentation

Release Summary Guide
Getting Started

Administrators Guide
User Guide

OPSVIEW User Guide

Parameter Reference
Command and Function Guide

AOF Rules User Guide
Messages Guide

Critical Path Monitor

Product Documentation
The Unicenter CA-OPS/MVS documentation set is provided in Portable Document
Format (PDF) and BookManager online formats. The Getting Started guide is also
provided in hard copy form.

Lesson 1 - Unicenter CA-OPS/MVS Overview

PV001 1 - 17 Computer Associates

1 - 17

Lesson Summary

You should now be able to:
Describe the role of Unicenter CA-OPS/MVS
in automation today
Identify and describe Unicenter CA-OPS/MVS
functions and components

Lesson 1 - Unicenter CA-OPS/MVS Overview

PV001 1 - 18 Computer Associates

1 - 18

Lesson 1 Assessment

Lesson 1 - Unicenter CA-OPS/MVS Overview

PV001 1 - 19 Computer Associates

Lesson 1 Assessment
Match the descriptions below with one of the following terms:

OPSVIEW OPSLOG REXX

SYSLOG Automation Point Unicenter CA-OPS/MVS

COF AOF Unicenter

POI EasyRule CA-SYSVIEW/E

RDF OPS/REXX EPI

CICS

_________ Unicenter CA-OPS/MVS repository of system events.
_________ A facility for creating rules.
_________ CA’s distributed automation offering.
_________ SAA-compliant programming language used in Unicenter

CA-OPS/MVS.
_________ Operations interface for Unicenter CA-OPS/MVS.
_________ Automated systems operations product for z/OS environments.
_________ Enables communications with VTAM applications.
_________ Unicenter CA-OPS/MVS interface to CICS.
_________ A facility that lets you use SQL statements to manage data.
_________ The heart of Unicenter CA-OPS/MVS.

Lesson 1 - Unicenter CA-OPS/MVS Overview

PV001 1 - 20 Computer Associates

Notes:

Lesson 2 - Navigating OPSVIEW

PV001 2 - 1 Computer Associates

ca.com

Navigating OPSVIEW

Lesson 2

Lesson 2 - Navigating OPSVIEW

PV001 2 - 2 Computer Associates

2 - 2

Lesson Objectives

After this lesson, you will be able to:
Navigate within OPSVIEW panels
Access and describe the OPSLOG and
Automation Analyzer options

Lesson 2 - Navigating OPSVIEW

PV001 2 - 3 Computer Associates

2 - 3

OPSVIEW Basics

z/OS

Unicenter CA-OPS/MVS

Automated Operations Facility
(AOF)

Automation
Analyzer EasyRule OPS/REXX OPSLOG

OPSVIEW

OPSVIEW Basics
OPSVIEW is the operations interface for Unicenter CA-OPS/MVS. It provides panels
for performing various z/OS system functions, and it is the primary vehicle for
controlling Unicenter CA-OPS/MVS itself.

There are two ways in which you can use OPSVIEW:
Use the facilities OPSVIEW provides.

Since TSO’s interactive facilities are available with OPSVIEW, you can
accomplish any operational procedure using OPSVIEW that you can using
a z/OS console. Using OPSVIEW makes these procedures easier to
perform.

Write your own OPSVIEW applications.
Because OPSVIEW is written almost entirely in the TSO CLIST and
OPS/REXX languages, you can easily extend it with your own programs.
You can customize or modify the sample programs that are provided with
Unicenter CA-OPS/MVS to meet your site’s unique requirements. See your
product documentation for descriptions of these programs.

Lesson 2 - Navigating OPSVIEW

PV001 2 - 4 Computer Associates

2 - 4

OPSVIEW Primary Options Menu
OPTION ===>

0 Parms Set OPSVIEW and ISPF default values
1 OPSLOG Browse OPSLOG
2 Editors AOF Rules, REXX programs, SQL Tables
3 Sys Cntl Display/Modify System Resources
4 Control Control CA-OPS/MVS II
5 Support Support and Bulletin Board information
6 Command Enter JES2/MVS/IMS/VM commands directly
7 Utilities Run CA-OPS/MVS II Utilities
A AutoMate AutoMate rules edit and control
I ISPF Use ISPF/PDF services
S SYSVIEW/E CA-SYSVIEW/E
T Tutorial Display information about OPSVIEW
U User User-defined applications
X Exit Exit OPSVIEW

OPSVIEW Primary Options Menu

OPSVIEW Primary Options Menu
The first menu you see is the OPSVIEW Primary Options Menu. The Primary Options
Menu contains a list of other menus, from which you can perform various functions.

To select an option, enter its option code in the Option field. For example, to browse
OPSLOG, type 1 in the Option field and then press Enter.

Lesson 2 - Navigating OPSVIEW

PV001 2 - 5 Computer Associates

2 - 5

OPSLOG - Option 1

Record of all Unicenter CA-OPS/MVS
automation events
– Used for analysis of all system events,

including messages
– Display is constantly updated as additional

events occur
– By default, the last 400,000 events are stored

OPSLOG Browse display allows you to
filter data

OPSLOG
The OPSLOG is a record of all automation events. As you learned in the last lesson,
OPSLOG is a repository that is used for analysis of all system events, including
messages.

In its OPSLOG, Unicenter CA-OPS/MVS keeps copies of all automation events. The
display is constantly updated as additional events occur. OPSLOG has a browse
facility that allows you to easily filter, search, archive, display, and print log data.

The OPSLOG resides in the extended private area of the Unicenter CA-OPS/MVS
main product address space (OPSMAIN). You control the number of events that are
kept in OPSLOG via the BROWSEMAX parameter. By default, Unicenter
CA-OPS/MVS stores the last 400,000 messages. In practice, the OPSLOG may
contain as few as 10,000 messages or as many as 3,000,000 messages.

Lesson 2 - Navigating OPSVIEW

PV001 2 - 6 Computer Associates

2 - 6

OPSLOG Browse
OPSLOG Browse A09IOPS - XE09 --- OPSVIEW --- 15:07:07 04JUN2003 COLS 001 070
COMMAND ===> SCROLL ===> PAGE
Time ----+----1----+----2----+----3----+----4----+----5----+----6----+----7
15:07:07 XCOMM0588I FERL=003* SERL=003* VERL=003*
15:07:07 XCOMM0588I TERL=00005* SWAIT=00030* TIMEOUT=00030
15:07:07 XCOMM0588I SESSIONS: CURRENT=000 MAXIMUM=000*
15:07:07 XCOMM0588I ALERTS: CONV=N SESS=N SEC=N FILE=N GEN=N
15:07:07 XCOMM0588I IPNAME = 141.202.198.44
15:07:07 XCOMM0588I IPPORT = 08044
15:07:07 XCOMM0012I LIST COMMAND PROCESSING SUCCESSFUL
15:07:08 $HASP308 DBDVMUF3 ESTIMATED TIME EXCEEDED BY 2780 MINUTES
15:07:08 IEA989I SLIP TRAP ID=X33E MATCHED. JOBNAME=*UNAVAIL, ASID=02AA.
15:07:16 F NG$GE01,SHOW
15:07:16 F NG$GE01,SHOW
15:07:16 XCOMM0013I SHOW
15:07:16 XCOMM0389I REQ#=000644,STATUS=INACTIVE,USER=NG$GEA1 ,NAME=XCOMNG0
15:07:16 XCOMM0012I SHOW COMMAND PROCESSING SUCCESSFUL
15:07:17 -ESF402 SESSION A18P1030 ENDED ON NETWORK GROUP 1
15:07:19 $HASP308 SYSTEM86 ESTIMATED TIME EXCEEDED BY 330 MINUTES
15:07:19 CAS9899W - USILEP05 (141.202.133.43:1721) not available...waiting
15:07:21 CAS9855I Task 8D7B60 connecting to peer 141.202.18.203:7011
15:07:21 CAS9899W - USWWSU22 (141.202.18.203:7011) not available...waiting
15:07:25 OPM1450H TSOUSER OPSS OPSLOG
******** ******************** BOTTOM OF MESSAGES ******************************

Accessing OPSLOG
You can access OPSLOG from the OPSVIEW Primary Options Menu. Additionally,
the OPSLOG can be accessed via the OPSLOG Webview. The OPSLOG Webview
consists of two components: a browser (GUI) and a server. The design of the GUI
brings all the OPSLOG functionality available via OPSVIEW option 1 to the
workstation. The OPSLOG Webview is a base component of the product, but
involves additional installation for proper implementation.
This class will utilize Option 1 from the OPSVIEW Primary options menu to access
and demonstrate the use of the OPSLOG.
The above display is an example of a typical OPSLOG Browse panel. Notice the
information shown on the top line of the panel. It can help you determine the status of
OPSLOG Browse. On the example panel:

“A09IOPS” is the MSF ID. This field indicates the MSF ID of the system whose
OPSLOG you are browsing. The value in this field helps you discern whether
you are viewing the local system’s OPSLOG or a remote system’s OPSLOG.
“XE09” is the SMF ID. This field indicates the SMF ID of the operating system
to which you are logged on.
“15:07:07 04JUN2003” indicates the date and time of the first automation
event, in the form hh:mm:ss ddmmmyyyy.

Lesson 2 - Navigating OPSVIEW

PV001 2 - 7 Computer Associates

Moving Around Within OPSLOG
To move around in the OPSLOG Browse display, use the standard ISPF Up, Down,
Left, and Right PF keys. Use the Scroll field to change the scroll amount.
Follow these guidelines when navigating through the OPSLOG event stream:

When you first enter OPSLOG Browse, the display is positioned at the bottom
of the OPSLOG event stream. Press Enter to refresh the display with the
latest events. The “Bottom of Messages” marker is visible.
If the OPSLOG Browse display is positioned at the top of the event stream
and the data area is full, press Enter to cause the oldest events to disappear
from the display. This occurs to accommodate the addition of new events to
the data area. The “Top of Messages” marker is visible at the top of the
display.
If you move the display from its initial position at the bottom of the event
stream, it will not return to the bottom of the even stream when you press
Enter. To put the display back into the mode in which it moves to the bottom of
the event stream each time you press Enter, type M on the command line, and
press the Down PF key.

Displaying Extra Columns of Information
You can use the DISPLAY command to change the format of the OPSLOG Browse
display. By issuing this command, you tell Unicenter CA-OPS/MVS what extra
columns of information you want to view for each event that appears on the OPSLOG
Browse display. The settings of the OPSLOG Browse display columns are retained
across OPSLOG Browse sessions. See your documentation for details about this
command.

Finding Character Strings in OPSLOG Browse
You can use the OPSLOG Browse FIND command to locate character strings within
event text.
You can use the OPSLOG Browse FIND column command to locate character
strings within a specific OPSLOG Browse display column.
The OPSLOG Browse FIND command works very much like the ISPF FIND
command. See your OPS/MVS documentation for more information.

Lesson 2 - Navigating OPSVIEW

PV001 2 - 8 Computer Associates

2 - 8

OPSLOG Browse Profile
---------------------------- OPSLOG Browse Profile ---------------------------
COMMAND ===>

Profile ID (? for list)
Specify I for Include (DEFAULT) and X FOR eXclude

Jobname I ===> I ===> I ===> I ===>
I ===> I ===> I ===> I ===>

MSGID I ===> I ===> I ===> I ===>
I ===> I ===> I ===> I ===>

Ruleset I ===> I ===>
Color I ===> I ===> I ===> I ===>
SYSNAME I ===> I ===> I ===> I ===>
User I ===> I ===> I ===> I ===>

Event Profiles - specify Y or N
MSG => Y CMD => Y DIS => Y DOM => Y ENA => Y
EOM => Y GLV => Y OMG => Y REQ => Y SEC => Y
TOD => Y SCR => Y ARM => Y EOS => Y EOJ => Y
TLM => Y USS => Y RULETRACE => Y

+--+
| No level 2 profile - SCROLL DOWN for level 2 profile entry |
+--+
Press ENTER key to update profile. Enter END command to return to OPSLOG.

OPSLOG Browse Profile
Because the amount of automation events that you can view using OPSLOG Browse
can be very large, you can set an OPSLOG Browse profile to filter out some of them.
By doing so, you can browse a subset of events that includes only the type of events
you want to see.

Specifying Profile Criteria
There are several places you can specify your profile criteria:

In the fields on the OPSLOG Browse Profile panel (shown above)
You may find it easier to set your profile from the OPSLOG Browse Profile
panel if you are a new user of Unicenter CA-OPS/MVS or you are
unfamiliar with OPSLOG Profile options. The OPSLOG Browse Profile
panel provides fields for setting each of the options, which means you will
not have to depend upon your memory to know which options are
available.

On the command line on the primary OPSLOG Browse panel
You may prefer to set your profile criteria directly on the primary OPSLOG
Browse panel if you are familiar with the options.

Lesson 2 - Navigating OPSVIEW

PV001 2 - 9 Computer Associates

From OPSVIEW option 0.4
OPSVIEW option 0.4 allows you to change or clear the profile before you
enter OPSLOG Browse.

To access the OPSLOG Browse profile panel, issue the PROFILE command
from the command line on the primary OPSLOG Browse panel. You see a
display similar to the one shown on the slide.

The options you choose on the OPSLOG Browse Profile panel determine which
automation events OPSLOG presents. For example:

If you enter a job name in the Jobname field with an “I” (Inclusion), only events
with that job name appear on the OPSLOG Browse display. If you enter an “X”
before the job name, the opposite occurs; all other events appear in the
OPSLOG Browse display, with the exception of those events that have the
entered job name.
All e(X)clusion entries are processed first. Only then are any (I)nclusion
entries applied. For example, if the job name JOB771 is entered with an “I,”
and an MSGID of $HASP373 is entered with an “X,” no events with a
message ID of $HASP373 appear in OPSLOG. Only events with the job name
of JOB771 (except for $HASP373) appear.
For some individual options (such as Ruleset, Color, and User), you may
specify multiple values. These multiple values are linked with a logical “or”;
thus, if you specify two values for Ruleset, the events that appear in OPSLOG
Browse are those that were initiated by either rule set.
All profile options are linked to the other options by a logical “and.” Thus, if you
specify a value for the Jobname field and a value for the Msgid field, only
those events that fit both criteria appear on the OPSLOG Browse display.
However, if you specify two Jobname values (such as VTAM and TEST) and
one Msgid value (such as IEF250I), those events that fit either set of criteria (a
job name of VTAM and a message ID of IEF250I, or a job name of TEST and
a message ID of IEF250I) appear on the OPSLOG Browse display.
If you specify values that do not match any OPSLOG entries (for example, a
job name that never existed in the system), it can affect system performance
because the entire OPSLOG data area must be searched. If this happens,
OPS/MVS must reference many pages of virtual storage, which causes many
real storage pages to be assigned.

Lesson 2 - Navigating OPSVIEW

PV001 2 - 10 Computer Associates

Setting Options for the OPSLOG Browse Profile Panel
There are three basic types of options on the OPSLOG Browse Profile panel:

Nonevent-related
Event-related
Command-only options

Nonevent-related OPSLOG Browse Profile Options:
Jobname – Limits events to those that are produced by this job. You can
specify up to eight job names.
MSGID – Limits events to those that have this message ID. You can specify
up to eight message IDs.
Ruleset – Limits events to those that are processed by this ruleset.rule. You
can specify up to two rule sets.
Color – Limits events to those that display in this color. You can specify up to
four colors.
SYSNAME – Limits events to those that are produced by this system. You can
specify up to four SMF IDs. Note: If your OPSLOG contains events from only
one system, this option does not limit events.
User – Limits events to those that have matching data in the USER column of
the OPSLOG. You can specify up to four user IDs.
RULETRACE – Limits events to those that reflect data resulting from the
RULETRACE parameter.
A wildcard is a value that you specify that ends in an asterisk (*). The asterisk
matches any one or more characters. You may specify wildcards for these
options: Jobname, MSGID, Ruleset (rule set name and rule name),
SYSNAME, and User.
For example, if you specify IMS* as the value for the JOBNAME option, all
events with job names that begin with the characters “IMS” appear in the
OPSLOG Browse display.

Lesson 2 - Navigating OPSVIEW

PV001 2 - 11 Computer Associates

Event-related OPSLOG Browse Profile Options
MSG - CICS, CA-7, CPM, GDI, NIP, trace, WTO, WTOR, or WTL messages;
or IMS messages, including those sent to MTO if the IOF is installed.
CMD - MVS, JES, IMS, or other subsystem commands; VM operator
commands.
DIS -The disabling of rules.
DOM - Delete-operator-message events.
ENA - The enabling of rules.
EOM - End-of-memory events.
GLV - Global variable events.
OMG - OMEGAMON exception events.
REQ - Request events.
SEC - Unicenter CA-OPS/MVS security events.
TOD - Time-of-day events.
SCR - EPI screen events.
ARM - Automatic Restart Management events.
EOS - End-of-step events.
EOJ - End-of-job events.
TLM - Time limit excession events.
USS - UNIX System Services events.

Command-only OPSLOG Browse Profile Options
CLEAR – Clears all of the nonevent-related profile entries and sets the event-
related profile entries to their defaults. The PROFILE CLEAR or CLEAR
command may be entered from the OPSLOG Browse Profile panel display.
LIST – Lists all of the previously saved Profile IDs. The PROFILE LIST
command may be entered in the Command field on the OPSLOG Browse
Profile panel display.

Note: While in the OPSLOG Browse Profile panel display, you may enter a question
mark (?) in the Profile ID entry field to display the Profile ID table.

Lesson 2 - Navigating OPSVIEW

PV001 2 - 12 Computer Associates

2 - 12

OPSLOG Second Level Profile
---------------------- OPSLOG Browse Second Level Profile ---------------------
COMMAND ===>
NOTE: Any non-blank entry in this second level profile will result in

additional processing and may cause some delay in your OPSLOG session.
__
| Scan for TEXT |Scan columns|
TEXT is case sensitive	FROM	TO
___	_____	______

ASID ===> ===> ===> ===>

Exit Type ===> ===> ===>
Valid Exit Types: MVS, JES3, IMS, OMG, DSN, TRAC, NIP, CICS, CNSV,

CA7, CPM, ARM, and NONE

Press ENTER key to update profile. Enter END command to exit.

OPSLOG Second Level Profile
The Second Level Profile panel, shown above, allows you to filter on specific
character strings in the message text. It may be displayed by scrolling down from the
primary OPSLOG Browse Profile panel.
Note: The second level of filtering is costly in terms of CPU and storage resources
and may significantly slow down your OPSLOG viewing response time.

Nonevent-related OPSLOG Browse Second Level Profile Options
Scan for TEXT – Limits events to those that have this character string in its
text. You can specify up to three character strings. Character strings are case-
sensitive.
ASID – Limits events to those that have this ASID. You can specify up to four
ASIDs.
Exit Type – Limits events to those that have this exit type. You may specify up
to three exit types.

Lesson 2 - Navigating OPSVIEW

PV001 2 - 13 Computer Associates

2 - 13

OPSLOG Current Profile ID
---------------------------- OPSLOG Browse Profile ---------------------------
C .-------------------------------------.
| Current profile Row 1 to 1 of 1 |
| COMMAND ===> | d X FOR eXclude

J | Line Commands: S Select D Delete | I ===> I ===>
| | I ===> I ===>

M | NOVTAM | I ===> I ===>
| ********* Bottom of data ********** | I ===> I ===>

R | | I ===>
C | | I ===> I ===>
S | | I ===> I ===>
U | | I ===> I ===>
'-------------------------------------'

Event Profiles - specify Y or N
MSG => Y CMD => Y DIS => Y DOM => Y ENA => Y
EOM => Y GLV => Y OMG => Y REQ => Y SEC => Y
TOD => Y SCR => Y ARM => Y EOS => Y EOJ => Y
TLM => Y USS => Y RULETRACE => Y

+--+
| No level 2 profile - SCROLL DOWN for level 2 profile entry |
+--+
Press ENTER key to update profile. Enter END command to return to OPSLOG.

OPSLOG Current Profile ID
The OPSLOG Browse Current Profile ID panel, shown above, displays the different
settings you have saved under individual IDs. A SAVE command entered with a valid
profile ID creates a new entry into the table. An ID may be entered into the “Profile
ID” entry field before issuing the SAVE command to create a new ID or overwrite an
existing ID. If an ID is not entered into this entry field, OPSLOG prompts you for a
new one.

This panel is displayed by entering a question mark (?) in the entry field “Profile ID” of
the primary OPSLOG Browse Profile panel.

Lesson 2 - Navigating OPSVIEW

PV001 2 - 14 Computer Associates

2 - 14

Automation Analyzer - Option 7.2

Tool for determining where your site can
benefit from automation
Allows you to:
– Examine OPSLOG message events
– Review a statistical analysis of OPSLOG

message events
– Immediately generate rules that delete or

suppress selected messages, or access
EasyRule to create or modify rules

Automation Analyzer
The Automation Analyzer assists you in automating your site by showing you where
your data center can benefit most from automation. With the information the
Automation Analyzer provides, you are in a better position to decide whether
automation of a message is desirable.

With the Automation Analyzer, you can:
Examine message events that appear in OPSLOG.
Review a statistical analysis of OPSLOG message events.
Access an interface to Chicago-Soft’s MVS/QuickRef product, through which
you can view message descriptions.
Immediately generate rules that delete or suppress selected messages, or
access EasyRule to create or modify rules that take other actions.

Lesson 2 - Navigating OPSVIEW

PV001 2 - 15 Computer Associates

2 - 15

Automation Analyzer
Automation Analyzer --- XE09 --- O P S V I E W ---------------- Subsystem OPSS
COMMAND ===>

Enter Automation Analyzer start and end date/time
or leave blank to use entire OPSLOG.

DATE TIME
YYYY/MM/DD HH:MM

START ===>
END ===>

Use * to specify the current date or time

Analyze WTORs only? ===> N (Y/N) and REPLIES? ===> N (Y/N)
Ignore if: Command Echo? ===> Y (Y/N) MPF Suppressed? ===> Y (Y/N)

Command Response? ===> Y (Y/N) Hardcopy Only? ===> Y (Y/N)

Use OPSLOG data from : *
Use * to specify OPSLOG for current subsystem

Enter END command to return to UTILITY Options Menu

(continued)

Automation Analyzer
Accessing the Automation Analyzer

You can access the Automation Analyzer in either of the following ways:
Type 2 in the Option field on the OPSVIEW Utilities Menu and press Enter.
Use the ISPF jump function by typing =7.2 into any valid field within
OPSVIEW and pressing Enter.

Fields on the Automation Analyzer Specification Panel
Start

To analyze only a portion of the message events, specify the desired
starting date and time. All message events that occurred after the start
date and time are analyzed.
To specify the current date and time, type an asterisk (*) into the fields.
To specify the beginning of the current day, type an asterisk (*) into the
DATE field.
If you leave the fields blank, the start date and time default to the date and
time of the oldest record in the OPSLOG.

Lesson 2 - Navigating OPSVIEW

PV001 2 - 16 Computer Associates

End
To analyze only a portion of the message events, specify the desired
ending date and time. All message events that occurred before the end
date and time are analyzed.
To specify the current date and time, type an asterisk (*) into the fields.
If you leave the fields blank, the end date defaults to the current date and
the end time defaults to 23:59.

Analyze WTORs Only
Specify Y to restrict the analysis to only WTORs.

Replies
Specify Y if you want the analysis to include replies issued to WTORs.
(If you specify Y in this field, you must also specify Y in the Analyze
WTORs Only field.)

Command Echo
Specify N if you want the analysis to exclude echoes of commands.

MPF Suppressed
Specify N if you want the analysis to exclude messages that MPF is
suppressing.

Command Response
Specify N if you want the analysis to exclude command response
messages.

Hardcopy Only
Specify N if you want the analysis to exclude “hardcopy only” message.

Use OPSLOG Data From
Specify the OPSLOG that you want the Automation Analyzer to analyze.
If you enter a fully qualified data set name, enclose it within single quotes.
If you omit the single quotes, OPS/MVS uses your TSO user ID as a prefix
for the data set name.
Specify an asterisk (*) if you want the Automation Analyzer to use the
OPSLOG from the currently active subsystem.

Using the Automation Analyzer Specification Panel
After you have indicated which messages you want to be analyzed on the
Automation Analyzer Specification panel, press Enter. If you make no entries,
the analysis starts from the beginning of the currently active OPSLOG and
continues to the current time.
A message appears to indicate that the analysis has begun. When the
analysis is complete, the Automation Analyzer Results panel appears.

Lesson 2 - Navigating OPSVIEW

PV001 2 - 17 Computer Associates

2 - 17

Automation Analyzer Results
Automation Analyzer --- XE09 --- O P S V I E W ------------ ROW 1 to 19 of 100
COMMAND ===> SCROLL ===> PAGE

Sel options: E - Easy Rule S - Suppress Message D - Delete Message
Q - Quick-Ref X - Extract Replies

Analysis done from 2003/01/10 09:00 to 2003/01/10 13:00
Total messages found : 21844
Total messages suppressed: 0 (0.00%)
Message Action # of Percent IBM OPS Ruleset Rule

Sel Identifier Taken Occr of Total Supp Supp.? Name Name
IST663I 859 13.00% 0.0%

E IEF450I 73 0.33% C 0.0%
IST530I 393 5.94% C 0.0%
IST314I 329 4.97% 0.0%
IST664I 329 4.97% 0.0%
IST889I 329 4.97% 0.0%
OPS1000I 312 4.72% 0.0%
OPC4403O 196 2.96% 0.0%
READY 170 2.57% 0.0%
OPS4320H 148 2.24% 0.0%
OPS3724H 121 1.83% 0.0%
OPSWTO 116 1.75% 0.0%
OPU1370H 116 1.75% 0.0%
OPS1181H 102 1.54% 0.0%
$HASP373 99 1.49% C 0.0%
IEA989I 92 1.39% C 0.0%
OPF1290H 86 1.30% 0.0%
OPF1290H 86 1.30% 0.0%

Automation Analyzer Results
After the Automation Analyzer completes its analysis of the selected messages, a
panel of results appears.

The summary statistics for the analysis appear in the top half of the panel. They
include this information:

The portion of the OPSLOG that was analyzed.
The total number of unique message IDs that the Automation Analyzer found.
The total number of messages in the analysis that were suppressed.
The percentage of the messages in the analysis that were suppressed.
Fields on the Automation Analyzer Results Panel

Lesson 2 - Navigating OPSVIEW

PV001 2 - 18 Computer Associates

The following describes the fields on the Automation Analyzer Results panel:
Sel

Specify the action to take for a message. Values are D, E, Q, R, S, and X.
See below for details about these options.

Message Identifier
The message ID.

Action Taken
The outcome of a previously entered Sel option.

of Occr
The number of times the message ID appeared in the analyzed OPSLOG.

Percent of Total
The frequency with which the message ID appeared.

IBM Supp
A value indicating whether the message appears on IBM’s conservative
(C) list for message suppression, aggressive (A) list, or neither (blank). For
more information about the list, refer to IBM’s documentation.

OPS Supp.?
The percentage of times the message was suppressed by Unicenter
CA-OPS/MVS.

Ruleset Name/Rule Name
The name of at least one rule that processes the message, and the name
of the rule set to which the rule belongs.

Primary Commands for the Automation Analyzer Results Panel
Locate msgid

Scrolls the panel so that the line referring to msgid is the top line on the
panel. You can specify a partial ID. For example, issue this command to
locate the first message ID that begins with the characters IST: L IST

REPORT
Sends a report to your ISPF LIST data set. With the exception of the
information that appears in the Action Taken field, the report includes all of
the information that the Automation Analyzer Results panel provides.

Lesson 2 - Navigating OPSVIEW

PV001 2 - 19 Computer Associates

SORT columnname
Sorts the list of messages according to the specified column. Values for
columnname are: msg, msgid, and message (to sort by Message Identifier
field); cnt, count, num, number, occ, and occurrence (to sort by # of Occr
field); and sup, supp, and suppressed (to sort by OPS Supp.? field).
Specify up to three values for columnname. For example, issue this
command to sort the messages first by OPS/MVS suppression and then by
message ID: SORT SUPP MSGID

Line Commands for the Automation Analyzer Results Panel
D

Immediately generates a rule that suppresses and deletes the message
from SYSLOG. (Occurrences of a message that has been deleted will still
be recorded in the OPSLOG.)

E
Invokes EasyRule so you can create or edit a rule for the message. Use
this command if you want to create a rule that does something other than
message suppression or deletion. This command is synonymous with the
R line command. (The EasyRule feature is discussed next.)

Q
Lets you view the MVS/QuickRef product’s description of the message.

R
Invokes EasyRule so you can create or edit a rule for the message. Use
this command to create a rule that does something other than message
suppression or deletion. This command is synonymous with the E line
command. (The EasyRule feature is discussed next.)

S
Immediately generates a rule that suppresses the message.

X
Extracts the replies issued to a WTOR message for automation.

Lesson 2 - Navigating OPSVIEW

PV001 2 - 20 Computer Associates

2 - 20

Lesson Summary

You should now be able to:
Navigate within OPSVIEW panels
Access and describe the OPSLOG and
Automation Analyzer options

Lesson 2 - Navigating OPSVIEW

PV001 2 - 21 Computer Associates

2 - 21

Lesson 2 Assessment

Lesson 2 Assessment
1. If you wanted to view all of the events that occurred in your z/OS system, which

OPSVIEW option would you select?

2. What would you type to “jump” to the Automation Analyzer Specification panel?

3. Is there another way that you can access the Automation Analyzer Specification
panel? If so, explain how.

4. Which command would you use to view a list of all possible data columns in the
OPSLOG?

Lesson 2 - Navigating OPSVIEW

PV001 2 - 22 Computer Associates

Lesson 2 Assessment (continued)
5. Which facility would you use if you wanted to generate rules but you had little or

no REXX experience?

6. Where does the Automation Analyzer obtain the data that it uses in its analysis of
the automation practices at your site?

7. Can you enter z/OS commands via OPSVIEW?

8. What would you type to “jump” to the EasyRule facility?

9. Can you invoke EasyRule from the Automation Analyzer?

10. Describe the difference between OPSVIEW and Unicenter CA-SYSVIEW.

Lesson 2 - Navigating OPSVIEW

PV001 2 - 23 Computer Associates

2 - 23

Lesson 2 Activity

Lesson 2 Activity – OPSVIEW Practice
Using the user ID and password given to you by your instructor, sign on to the
Education system and access Unicenter CA-OPS/MVS.

Using the OPSLOG Browse Feature
1. Enter 1 (OPSLOG) in the Option field on the OPSVIEW Primary Options Menu.

The OPSLOG Browse panel displays.
2. Issue the DISPLAY command and select the following columns in the specified

order:
1 – Date
2 – Time
3 – JOBNM (job name)
4 – MSGID (message ID)
5 – MSGNO (message number)

3. Press PF3 and browse the OPSLOG, which now contains the columns you
specified. (Be sure to scroll to the right.)

Lesson 2 - Navigating OPSVIEW

PV001 2 - 24 Computer Associates

Lesson 2 Activity (continued)
4. Use the FIND command to position your cursor at occurrences of the following:

The word “abend”.
$HASP100 messages.
$HASP395 messages.

5. Use the LOCATE command to position your cursor at a message number of your
choice.

6. Use the PROFILE command to filter the OPSLOG:
Exclude job names that begin with OPS (specify OPS*).
Exclude message IDs that begin with IEF (specify IEF*).

7. Issue an z/OS command (/ command). For example:
/ D A,tsouserid

Using the Automation Analyzer
1. Enter 7.2 in the Option field on the OPSVIEW Primary Options Menu. The

Automation Analyzer Specification panel appears.
2. Press Enter to analyze the entire OPSLOG. Unicenter CA-OPS/MVS displays the

“OPSLOG analysis in progress” message. When the analysis is completed,
Unicenter CA-OPS/MVS displays the Automation Analyzer Results panel.

3. Perform the following actions:
Extract a reply (X) for a message.
Delete a message (D) so that it will not appear in the SYSLOG.

Notice that the text in the “Action Taken” column changes according to the action
you perform.

Using the Command Feature
1. Enter 6 (Command) in the Option field on the OPSVIEW Primary Options Menu.

The MVS/JES Command Processor panel displays.
2. Enter a display command (for example, D T) of your choice on the Command line.
3. Enter two or three more display commands on the Command line, one at a time.
4. Use the CMDLIST PAST command to view the commands you entered.
5. Place your cursor to the left of a command you want to execute and then press

Enter.
6. Scroll through past commands using the UP2 and DOWN2 commands.

Lesson 2 - Navigating OPSVIEW

PV001 2 - 25 Computer Associates

Lesson 2 Activity (continued)
Using the Tutorial
1. Enter T (Tutorial) in the Option field on the OPSVIEW Primary Options Menu.

The Tutorial panel appears.
2. Enter 3 (Sys Control) in the Option field on the Tutorial panel.
3. Enter 1 (Address Space) in the Option field on the next Tutorial panel.
4. Explore the information regarding controlling address spaces.
5. Exit the Tutorial and then access the actual Address Space Control panel

(OPSVIEW option 3.1). Examine the information that is presented on this panel.
6. Access the Tutorial again. The Tutorial panel displays.
7. Enter 4 (Control) in the Option field on the Tutorial panel.
8. Enter 1 (Parms) in the Option field on the next Tutorial panel.
9. Enter 1 (Parms) in the Option field on the next Tutorial panel.
10. Read about setting/displaying product parameters.

Lesson 2 - Navigating OPSVIEW

PV001 2 - 26 Computer Associates

Notes:

Lesson 3 - Understanding Rules

PV001 3 - 1 Computer Associates

ca.com

Understanding Rules

Lesson 3

Lesson 3 - Understanding Rules

PV001 3 - 2 Computer Associates

3 - 2

Lesson Objectives

After this lesson, you will be able to:
Describe the AOF
Describe rules, where they reside, and how
they are created
Recognize and interpret different types of
rules

Lesson 3 - Understanding Rules

PV001 3 - 3 Computer Associates

3 - 3

AOF

z/OS

Unicenter CA-OPS/MVS

Automated Operations Facility
(AOF)

Automation
Analyzer EasyRule OPS/REXX OPSLOG

OPSVIEW

AOF
The ability to react to various system events is crucial when attempting to build
effective automated applications. The Automated Operations Facility (AOF) is a
component of Unicenter CA-OPS/MVS that monitors system events and
responds to them automatically.

You determine the system events that the AOF recognizes—and how it responds
to those events—by defining special OPS/REXX programs called AOF rules. AOF
rules are classified as special OPS/REXX programs because they have a unique
structure, reside in partitioned data sets (PDS) called rule sets, and are triggered
by some system event.

Lesson 3 - Understanding Rules

PV001 3 - 4 Computer Associates

The AOF can take action in response to the following types of system events:
Automatic Restart Management events (ARM)
Application Program Interface (API)
Operator command events (CMD)
Delete operator message events (DOM)
End-of-job events (EOJ)
End-of-memory events (EOM)
End-of-step events (EOS)
Global variable events (GLV)
Message events (MSG)
OMEGAMON exception events (OMG)
End-user request events (REQ)
Screen events (SCR)
Security events (SEC)
Time limit exceeded events (TLM)
Time of Day events (TOD)
UNIX System Services events (USS)

Lesson 3 - Understanding Rules

PV001 3 - 5 Computer Associates

3 - 5

AOF

Automated Operations Facility
Monitors system events and responds
to them automatically
Made up of rules and rule sets
Consists of two facilities for managing
system events:
– Production
– Test

Heart of Unicenter CA-OPS/MVS

(continued)

AOF
The AOF is made up of rules and rule sets. A rule is a collection of OPS/REXX
programs. A rule set is a collection of rules.

The AOF is the heart of Unicenter CA-OPS/MVS. It is where the majority of the
work is performed.

The AOF consists of two separate facilities for managing system events:
Production facility.
Test facility.

Lesson 3 - Understanding Rules

PV001 3 - 6 Computer Associates

AOF Production Facility
The production facility handles actual system events; for example, the issuing of a
WTO message. It spans several Unicenter CA-OPS/MVS components:

The Unicenter CA-OPS/MVS main address space (OPSMAIN), which
provides services for detecting events and managing rules.
OPSVIEW, which provides interactive applications that you can use to
control AOF parameters (OPSVIEW option 4.1.1); control AOF rules
and the AOF production compiled rules library (OPSVIEW options 4.5.1
and 4.5.2); and modify global variables (OPSVIEW option 4.8).
The OPS/REXX language, which not only serves as the language in
which you write rules, but also provides facilities for controlling the
AOF.
The Programmable Operations Interface (POI), which contains the
OPSPARM command processor; the OPSPARM command processor
sets several parameters that affect the overall operation of the AOF.

AOF Test Facility
The test facility lets you develop and test automation rules offline, before putting
them into production.

The primary components of the test facility are OPSVIEW options 2.1 (for editing
and testing AOF rules) and 2.2 (for maintaining the AOF test compiled rules
library).

Lesson 3 - Understanding Rules

PV001 3 - 7 Computer Associates

3 - 7

What Are AOF Rules?

System Event Action

Rule

If something happens
(system event),

then do something
(action)

What Are AOF Rules?
A rule is a collection of OPS/REXX programs. Each of these programs resides in
special sections of a rule. Each section defines an aspect of the rule’s execution.

The rule sections are:
Event definition (required).
Initialization.
Processing.
Termination.

A rule must contain an event definition section and at least one other section. In
addition, a rule may contain an END statement.

Rules are stored within rule sets.

Rules support automated operations within Unicenter CA-OPS/MVS.

Lesson 3 - Understanding Rules

PV001 3 - 8 Computer Associates

3 - 8

What Is an AOF Rule Set?

System Event
Rule Set B

Rule Set A

Rule A1
Rule A2
Rule A3

Action

. . .

. . .

Rule B1
Rule B2
Rule B3

. . .

. . .

What Is an AOF Rule Set?
A rule set is a collection of rules. Rules are created and stored within rule sets.
Rule sets are partitioned data sets (PDS). The initialization parameters named
RULEPREFIX and RULESUFFIX determine the naming standard for rule sets.

Example:
Using the following parameter settings:

RULEPREFIX='OPSMVS.AOF' RULESUFFIX='RULES'
The rule sets would have a name mask of 'OPSMVS.AOF.*.RULES'
where * is the rule set name. For example:

OPSMVS.AOF.SUPPRESS.RULES
Each rule would then occupy a separate member within the rule set:

OPSMVS.AOF.SUPPRESS.RULES($HASP100)

In the example above, the rule named $HASP100 resides in the SUPPRESS rule
set.

Lesson 3 - Understanding Rules

PV001 3 - 9 Computer Associates

Determining Rule Set Names
Choose a naming convention for your rule sets that best fits your site’s
requirements. Here are some conventions to keep in mind when naming your rule
sets:

You can name rule sets according to rule type. For example, MSG for
message rules, CMD for command rules, or TOD for time-of-day rules.
You can name rule sets according to a particular automated application
or request. For example, SUPPRESS for suppression rules, JES for
JES-related rules, or IPLTIME for IPL-related rules.
You can name rule sets according to individual groups or divisions
within your organization. For example, CICSGRP for CICS personnel,
OPERATNS for operations personnel, or IMSGRP for IMS personnel.

Multiple rule sets allow various groups using Unicenter CA-OPS/MVS within your
data center to work independently of each other. Because each rule set is a
separate data set, your security product can restrict rule set access to specific
groups.

Defining Rule Sets
Follow standard ISPF/PDF data set naming requirements when creating rule sets
using any of these methods:

Option 3.2 of ISPF/PDF.
TSO’s ALLOCATE command.
Option 4.5.1 of OPSVIEW.

Specifying Parameters When Defining Rule Sets
Use these parameter values when allocating AOF rule sets:

DSORG=PO
RECFM=FB
LRECL=80

Use these parameters at your discretion:
DSN
BLKSIZE
SPACE
UNIT

Lesson 3 - Understanding Rules

PV001 3 - 10 Computer Associates

3 - 10

Writing a Message Rule

Use Automation
Analyzer

A possible start

Review OPSLOG

Fine-tune rule

Invoke EasyRule Decide on action

Writing a Message Rule
There are many factors to consider when you start to write a message rule. To
get an idea of the types of messages for which you want to write rules, review the
OPSLOG. The OPSLOG will give you a good idea of the types of messages you
may want to suppress or have AOF take other actions on. The Automation
Analyzer can also provide information about where you may benefit from
automating procedures. Once you decide what types of actions you want to
perform, you can then use EasyRule to write your rules.

Lesson 3 - Understanding Rules

PV001 3 - 11 Computer Associates

3 - 11

Writing a Rule

Rule

Code EasyRuleEditor

(continued)

Writing a Rule
You can use any editor to write rules:

Such as TSO EDIT or ISPF/PDF EDIT.
OPSVIEW’s AOF Edit options use a version of the ISPF/PDF editor,
modified with special help panels.
And you can use EasyRule to write your simple rules.

Unicenter CA-OPS/MVS provides example rules, located in the
SYS1.OPS.RULES data set.

Lesson 3 - Understanding Rules

PV001 3 - 12 Computer Associates

3 - 12

AOF Rule Sections

Must have at least
one of these sections

Required section Event Definition

Initialization

Processing

Termination

AOF Rule Sections
As you learned earlier, a rule contains sections. Each section defines an aspect of
the rule’s execution:

Event definition (required).
Initialization.
Processing.
Termination.

A rule must contain an event definition section and at least one other section.
Each section is described in detail next.

Section headers delimit each section of a rule. Each section header must:
Appear on a separate line by itself.
Begin with a) character in column 1.

Lesson 3 - Understanding Rules

PV001 3 - 13 Computer Associates

3 - 13

AOF Rule Sections - Event Definition

Event Definition

Initialization

Processing

Termination

Specifies system event
causing rule to execute

)nnn

Event Definition
The event definition section of a rule specifies the system event that will cause
the rule to execute. Unicenter CA-OPS/MVS uses the information in the event
definition section to determine when to run the processing section of the rule. The
event definition section is required and is always the first section of a rule.

Use this format for coding the event definition section:
)eventtype eventspec

The eventtype value is a three character designator identifying the AOF event
type that the rule is intended to respond to.

Here are the valid three character designators:
)ARM)CMD)DOM)EOJ)EOM
)EOS)GLV)MSG)OMG)REQ
)SCR)SEC)TLM)TOD)USS

Lesson 3 - Understanding Rules

PV001 3 - 14 Computer Associates

The eventspec value is a character string template that matches some event
identifier (such as message IDs for MSG events, system command verbs for
CMD events, time specifications for TOD events).

Note the following when specifying eventspec:
The character string must match the event identifier exactly. For
example, a value of “IEC205” matches an “IEC205” identifier only.
You can use the wildcard character (*).
Examples:

IEC* matches IEC234, IECTL56, IEC67505, and any other event
identifier containing an IEC prefix.
IEC*05 matches IECD05, IEC205, IEC67505, and so on.
*05 matches any identifier ending with 05.
* alone matches any identifier.

Executing Multiple Rules in Response to a Single Event
You can write any number of rules that respond to a single event. Except for time
rules with exactly matching event criteria, rules execute in a predictable order, as
shown:
1. Rules with the most specific event criteria are tested first.

Message rules with most-specific to least-specific event specifiers are
tested in this order:

IST020I (seven significant characters—most specific)
IST*I (four significant characters—less specific)
IST* (three significant characters—least specific)

2. Event specifiers containing the same number of significant characters are
tested in the order of longest prefix length.

If three event specifiers all contain six significant characters, they are
tested in this order:

IST02*I (five-character prefix)
IST0*0I (four-character prefix)
IST*20I (three-character prefix)

3. Rules containing identical event specifiers are tested in unpredictable order. If
you want the rules to execute in a particular order, combine them into a single
rule. (Do not combine unrelated rules, however, because doing so makes
applications difficult to manage.)

Lesson 3 - Understanding Rules

PV001 3 - 15 Computer Associates

Resolving Conflicting Rules
Conflicts may occur if more than one rule responds to a single event. For
example, one rule may want to color a message white while another may want to
color it red. In such cases, the following guidelines apply:

In conflicts between two rules, the action specified by the rule which
executed last will usually occur.
To determine event disposition, the AOF uses the highest-precedence
return value from the rule’s processing section.

Coordinating Rules Processing for a Single Event
The AOF supports a special event-related variable that you can use to control
how multiple rules execute when a single event occurs. When the first rule
executes in response to an event, it can set the value of a special variable which
other rules (triggered by the same event) can check or modify.

Each variable is eight bytes long and can contain any type of data. Name special
variables according to this format:

eventtype.USER

More About Event Types
This lesson focuses on command, message, time-of-day, and security rules.

Command (CMD) Event
A command event occurs when any z/OS or subsystem command
is issued on the system.

Message (MSG) Event
A message event occurs when a system component sends a
message to a console or a system log. The AOF recognizes and
responds to these types of messages:

z/OS
IMS
CICS (transient data queue messages)
JES2/JES3
Application-generated WTOs (write-to-operator), WTORs
(write-to-operator-with-reply), and WTLs (write-to-log)
Job log- or log file-directed

Lesson 3 - Understanding Rules

PV001 3 - 16 Computer Associates

Time-of-day (TOD) Event
A time event can occur when automation needs to be performed at
a specified time, date, or after a specified time interval.

Security (SEC) Event
A security event occurs when you invoke any Unicenter
CA-OPS/MVS facility (for example, issuing the OPSCMD command
processor to issue an z/OS command), allowing security for
Unicenter CA-OPS/MVS to be performed by coding OPS/REXX
programs rather than sophisticated assembler exits.

Lesson 3 - Understanding Rules

PV001 3 - 17 Computer Associates

3 - 17

Event Definition Example

)MSG IEF450I

Type of event Specific event

Valid event types:

)ARM)CMD)DOM)EOJ)EOM
)EOS)GLV)MSG)OMG)REQ
)SCR)SEC)TLM)TOD)USS

Event Definition Example
In the following example, a rule is being defined for a message event. The
specific event for which this rule is being defined is the IEF450I message.

)MSG IEF450I

Lesson 3 - Understanding Rules

PV001 3 - 18 Computer Associates

3 - 18

AOF Rule Sections - Initialization

Event Definition

Initialization

Processing

Termination

Specifies actions rule
takes whenever you
enable it

)INIT

Initialization
The initialization section of a rule specifies actions the rule takes when it becomes
enabled. The initialization section is optional. If included, it always follows the
event definition section. This section executes in the Unicenter CA-OPS/MVS
main address space.

Use this format for coding the initialization section:
)INIT

/* Insert initialization section action(s) */

Lesson 3 - Understanding Rules

PV001 3 - 19 Computer Associates

The initialization section can contain OPS/REXX programs of varying complexity.
Examples of some actions that you can program in the initialization section
include:

Issue operator commands (for z/OS, JES3, and VM).
Issue TSO commands or CLISTs.
Check the validity of the rule-enable request.
Set initial values for variables.

Valid Return Values
The OPS/REXX RETURN statement allows or disallows a rule’s
enablement.
Valid values for a RETURN statement in a rule’s initialization section
are:

ACCEPT
Allows the rule to be enabled.

REJECT
Prevents the rule from being enabled.

Note: The return values listed here are character constants, rather than
keywords.
Example. This statement prevents the rule from being enabled:

RETURN "REJECT"

If you do not specify a return value, the default return value is ACCEPT.
If a run-time error occurs, the return value is ACCEPT (assuming that
the error occurs while the initialization section is executing).

Lesson 3 - Understanding Rules

PV001 3 - 20 Computer Associates

3 - 20

Initialization Example
)MSG IEF450I

)INIT

/*This code will fire ONCE when the rule is enabled*/

IF OPSINFO('SMFID') <> 'SYSA' THEN RETURN 'REJECT'

TABENDS = 0

Initialization Example
The example builds upon the event definition example. The OPS/REXX
OPSINFO function is used to obtain the current SMFID and determine whether
the rule will be enabled on system SYSA. The code rejects (that is, it does not
allow) enablement on all other systems. The example code also initializes a static
variable called TABENDS to zero. This variable is utilized in the processing
section of the rule.

Lesson 3 - Understanding Rules

PV001 3 - 21 Computer Associates

3 - 21

AOF Rule Sections - Processing

Event Definition

Initialization

Processing

Termination

Specifies actions to
take in response to
system event that
triggered rule

)PROC

Processing
The processing section of a rule specifies the action(s) the rule initiates in
response to the AOF detecting the system event that is defined in the event
definition section of the rule. The processing section is optional. If included, it
always follows the event definition section and initialization section (if it exists).
This section runs synchronously in the address space where the system event
occurred. No other processing can occur in that address space until AOF
processing has completed.

Use this format for coding the processing section:
)PROC

/* Insert processing section action(s) */
.
.
.

Lesson 3 - Understanding Rules

PV001 3 - 22 Computer Associates

The processing section can contain a simple OPS/REXX statement or a complex
OPS/REXX program. You can use the processing section to:

Test for subsets of the event definition to find other possible system
events that may be of interest.
Collect information about the event and update global variables.
Change, suppress, or route a message (when responding to a
message event).
Change or suppress a command (when responding to a command
event).
Reply to a WTOR message.
Issue z/OS, JES3, or VM operator commands.
Invoke TSO commands or CLISTs.

Valid Return Values
The OPS/REXX RETURN statement works differently according to the
type of event that the rule is acting upon. Refer to the documentation
for detailed information on valid return statement values for each event
type.

Lesson 3 - Understanding Rules

PV001 3 - 23 Computer Associates

3 - 23

Processing Example
)MSG IEF450I
)INIT
/*This code will fire ONCE when the rule is enabled*/
IF OPSINFO('SMFID') <> 'SYSA' THEN RETURN 'REJECT'
TABENDS = 0
)PROC
/* This code will fire each time AOF detects */
/* an IEF450I message event on the system. */
TABENDS = TABENDS + 1
IF MSG.JOBNAME <> 'PRDCICSA' THEN RETURN
PARSE VAR MSG.TEXT . 'ABEND=' ABEND
CONSOLE = OPSINFO('MSTCONSNM')
ADDRESS WTO

"MSGID(OPSAUTO1) TEXT('PRDCICSA ABEND CODE=",
"("ABEND" AT "TIME()"') HILITE CNNAME("CONSOLE")"

Processing Example
The example builds upon the event definition and initialization examples. A
combination of AOF tools (REXX, AOF variables, OPS/REXX host environments)
is used to send an alert message to the sysplex master console if the job named
PRDCICSA abends.

Lesson 3 - Understanding Rules

PV001 3 - 24 Computer Associates

3 - 24

AOF Rule Sections - Termination

Event Definition

Initialization

Processing

Termination
Specifies actions
rule takes when it
is disabled

)TERM

Termination
The termination section of a rule specifies the action(s) the rule takes when it is
disabled. The termination section is optional. If included, it is the last section of a
rule. This section executes in the Unicenter CA-OPS/MVS main address space.

Use this format for coding the termination section:
)TERM

/* Insert termination section action(s) */

You can use the termination section to:
Issue z/OS, JES3, or VM operator commands.
Invoke TSO commands or CLISTs.
Reset or save variable values.

Lesson 3 - Understanding Rules

PV001 3 - 25 Computer Associates

Valid Return Values
The OPS/REXX RETURN statement allows or disallows a rule’s
disablement.
Valid values for a RETURN statement in a rule’s termination section
are:

ACCEPT
Allows the rule to be disabled.

REJECT
Prevents the rule from being disabled.

Example. This statement prevents the rule from being disabled:
RETURN "REJECT"

If you do not specify a return value, the default return value is ACCEPT.
If a run-time error occurs, the return value is ACCEPT (assuming that
the error occurs while the termination section is executing).
Note: A return value of REJECT stops the disablement of a single rule
only. If you disable the rule set, the rules within the rule set are always
disabled, regardless of the return values in the individual rules.

Specifying End of a Rule
The END statement marks the end of a rule. The END statement is optional and
does not affect rule execution. If included, it is always the last line of a rule.

Use this format for coding the END statement:
)END

Lesson 3 - Understanding Rules

PV001 3 - 26 Computer Associates

3 - 26

Termination Example
)MSG IEF450I
)INIT
/*This code will fire ONCE when the rule is enabled*/
IF OPSINFO('SMFID') <> 'SYSA' THEN RETURN 'REJECT'
TABENDS = 0
)PROC
/* This code will fire each time AOF detects */
/* an IEF450I message event on the system */
TABENDS = TABENDS + 1
IF MSG.JOBNAME <> 'PRDCICSA' THEN RETURN
PARSE VAR MSG.TEXT . 'ABEND=' ABEND
CONSOLE = OPSINFO('MSTCONSNM')
ADDRESS WTO

"MSGID(OPSAUTO1) TEXT('PRDCICSA ABEND CODE=",
"("ABEND" AT "TIME()" ') HILITE CNNAME("CONSOLE")"

)TERM
/*This code will fire ONCE when the rule is disabled*/
IF OPSINFO('PRODUCTSTATUS') <> 'TERM' THEN

RETURN 'REJECT'
MSG = 'OPSAUTO1 TOTAL IEF450I ABENDS = 'TABENDS
LOGTOTALS = OPSSEND('*','B',MSG)

Termination Example
The example, which builds upon the event definition, initialization, and processing
examples. Rule disablement is allowed only at Unicenter CA-OPS/MVS
shutdown. The example code also sends a message to the OPSLOG with the
value of the static variable TABENDS, which was calculated during the rule’s
processing section.

Lesson 3 - Understanding Rules

PV001 3 - 27 Computer Associates

3 - 27

Types of Rules

)ARM

)EOJ

)GLV

)REQ

)TLM

)CMD

)EOM

)MSG

)SCR

)TOD

)DOM

)EOS

)OMG

)SEC

)USS

)API

Types of Rules
There are 15 rule types in Unicenter CA-OPS/MVS:

ARM - Responds to an Automatic Restart Management (ARM) event,
providing the ability to intercept the event before the restart occurs.
API - Responds to direct interface calls from other CA products.
CMD - Responds to a command event.
DOM - Responds to a delete-operator-message event.
EOJ - Responds to an end-of-job event.
EOM - Responds to an end-of-memory event.
EOS - Responds to an end-of-step event, providing ability to monitor
termination of each step of initiated batch jobs, and started tasks.

Lesson 3 - Understanding Rules

PV001 3 - 28 Computer Associates

GLV
Responds to a global variable event, allowing you to create an
inferencing capability within Unicenter CA-OPS/MVS. Inferencing
refers to one event triggering another, which triggers another, and
so on, until such processing achieves some goal.

MSG
Responds to a message event.

OMG
Responds to an OMEGAMON exception event.

REQ
Responds to an end-user request event.

SCR
Responds to a screen event.

SEC
Responds to a security event, providing an easy-to-use method for
protecting Unicenter CA-OPS/MVS facilities.

TLM
Responds to a time limit excession event, providing the ability to
intercept the event when either processor usage or continuous wait
time limits for a job or task are exceeded.

TOD
Responds to a time-of-day event, providing the ability to take some
action at a certain time or after a specified time interval.

USS
Responds to a UNIX System Services event, allowing you to write
automation procedures for messages that originate from Unicenter
TNG Framework for z/OS.

Command, message, security, and time-of-day rules are covered in detail in this
lesson.

Lesson 3 - Understanding Rules

PV001 3 - 29 Computer Associates

3 - 29

Command Rule

Allows you to:
– Disallow command
– Change operands of a command
– Replace command with one or more other

commands
– Create new command

Command Rule
A rule responds to a command if the first blank-delimited word in the command
string matches the command verb string that you specify in the rule’s event
definition section.

Use this format when coding the command event definition section:
)CMD cmdverbspec

Follow these guidelines when specifying the character string for the cmdverbspec
command verb specifier:

Specify one to ten characters.
The string cannot contain embedded blank spaces.
You can use the wildcard (*) character.

ST* matches z/OS START and STOP commands or any pseudo
command that begins with ST.
* alone matches all command events on the system.

Lesson 3 - Understanding Rules

PV001 3 - 30 Computer Associates

Lowercase letters are acceptable, but the AOF converts them to
uppercase for event testing.
z/OS and VM command considerations

Specify the full command verb or a mask of the command verb
when attempting to trigger z/OS and VM commands. For example,
when writing a command rule that triggers whenever a z/OS
DISPLAY command is issued, specify)CMD DISPLAY rather than
)CMD D, or specify)CMD MODIFY rather than)CMD F to execute
z/OS modify commands. Although you must specify the full z/OS or
VM command verb in the rule’s event definition section, a command
rule recognizes a command event if an operator issues a short form
(alias) of the command. Additional logic can be implemented in the
)PROC section of the rule to interrogate the CMD.TEXT event
variable to see the exact z/OS or VM command that was entered in
the SSI.
z/OS may reissue some commands internally if they do not originate
from the CONSOLE address space (that is, if a program issues the
commands rather than a z/OS console). z/OS re-issues such
commands so that the processing occurs in the CONSOLE address
space, causing a CMD rule to possibly execute twice. z/OS reissues
DISPLAY ACTIVE commands and any other command that creates
paged-frame display output on a z/OS console.

JES2 command considerations
Specify the JES2 command character followed by the first letter of
the JES2 command when attempting to trigger JES2 commands.
For example, assuming the “$” sign is the JES2 command character
and you want to trigger the $TI initiator command, you would code a
command specifier of)CMD $T. Additional logic can be
implemented in the)PROC section of the rule to interrogate the
CMD.TEXT event variable to view the exact JES2 command that
was entered.

JES3 command considerations
When writing rules that respond to JES3 commands, begin the
cmdverbspec event identifier string with the wildcard (*) character;
for example,)CMD *START.

Lesson 3 - Understanding Rules

PV001 3 - 31 Computer Associates

Because the cmdverbspec string in the event definition section must
begin with the wildcard (*) character, a rule triggered by an
INQUIRY command is also triggered by NOINQUIRY (not a JES3
command) and INQUIRY (a possible z/OS command).You can
solve the problem by coding the processing section of your rule as
shown in this example:

)CMD *INQUIRY
)PROC
IF CMD.VERB ¬= '*INQUIRY' THEN
RETURN 'NOACTION'

If a JES3 command originates from an MCS console, the AOF
processes the rule twice (once as a z/OS command and once as a
JES3 command), meaning that a rule triggered by the command
executes twice.
A CMD rule can change *START PRTR1 to *START PRTR2, but it
cannot change it to VARY 2F0,OFFLINE.

Subsystem command character considerations other than JES2
commands

Specify the command character followed by the wildcard * character
to execute commands issued via a defined command character. For
example, assuming the “/” sign is the command character for a
particular subsystem, you would code)CMD /* to trigger commands
issued via the command character. Additional logic can be
implemented in the)PROC section of the rule to interrogate the
CMD.TEXT event variable to view the exact command that was
entered.

Valid Return Values
The OPS/REXX RETURN statement specifies the final disposition of a z/OS
command. For example, the RETURN statement can:

Allow z/OS to execute a command.
Prevent z/OS from executing a command.
Force z/OS to reject a command.

Valid values for a RETURN statement in the processing section of a command
rule are:

NOACTION
Allows z/OS to process a command (after AOF processing, if any).

Lesson 3 - Understanding Rules

PV001 3 - 32 Computer Associates

ACCEPT
Prevents z/OS from processing a command. Instead, the AOF
allows your rule to process the command.

REJECT
Causes z/OS to reject a command as invalid (regardless of whether
the command is a valid or invalid z/OS command). Use this option
to prevent a z/OS command from executing.

Default —RETURN "NOACTION"
Notes: The return values listed here are character constants, rather
than keywords.
An unrecognized return value—for example, a misspelled value—
defaults to a value of NOACTION.

Other RETURN Statement Considerations
In a command rule, the return value can affect command processing as follows:

If multiple rules respond to a single command event, the AOF uses the
highest-precedence return value. The order of precedence is:

REJECT (highest precedence)
ACCEPT
NOACTION (lowest precedence)

The return value does not necessarily affect how subsystems process
commands.

Some types of commands (such as z/OS and VTAM) are processed
only after all other subsystems (including Unicenter CA-OPS/MVS)
have processed them. You can control such commands by either:

Setting one of the three valid return values
Using the rule to change the command text (modifying the
text of subsystem commands such as JES, DB2, NetView,
BDT, and so on may not work; see your Unicenter
CA-OPS/MVS documentation for more information).

Note: If the SSICMD (Unicenter CA-OPS/MVS initialization)
parameter is set to YES, a REJECT return value assures that the
AOF intercepts a command before any other subsystem receives it.

Lesson 3 - Understanding Rules

PV001 3 - 33 Computer Associates

3 - 33

Command Rule Example 1
)CMD $T

)PROC

/* Attempting to fire on a JES2 COMMAND MEANS WE MUST HAVE A */

/* SPECIFIER OF THE JES2 CHARACTER ($ SIGN) FOLLOWED BY THE */

/* FIRST LETTER OF THE DESIRED COMMAND (T FOR TIxxx). SINCE */

/* MANY JES2 COMMANDS CAN BEGIN WITH 'T' (TIXXX,TPRTXXX) WE */

/* MUST CHECK THE EVENT VARIABLE CMD.TEXT TO SEE THE EXACT */

/* TEXT OF THE COMMAND THAT WAS ENTERED. Leave rule if this */

/* is not a JES2 initiator control command. SSICMD parm must */

/* be set to YES for JES2 CMD control. */

IF SUBSTR(CMD.TEXT,1,3) ¬= '$TI' THEN RETURN

Command Rule Example 1
The above example is a rule that ensures that JES2 initiator control commands
($Tix) can only be issued from the current sysplex master console.

First, the rule checks to see if an initiator control command caused the rule to fire.
If not, the rule ends without taking any action.

Lesson 3 - Understanding Rules

PV001 3 - 34 Computer Associates

3 - 34

Command Rule Example 1 (continued)

/* Use the OPS/REXX OPSINFO function to get current sysplex */

/* master console value, then compare this value to the */

/* value of the console that issued the command which is */

/* contained in the CMD.CONSNAME event variable. If this */

/* is not the sysplex master, we'll send a message back to */

/* console and null out the command so JES2 won't see it. */

PLEXMSTR= OPSINFO('MSTCONSNM')

IF CMD.CONSNAME ¬= PLEXMSTR THEN DO

DO

MSGTXT = 'JES2 init control Not allowed from this console'

ADDRESS WTO

"MSGID(OPSMVS01) TEXT('"MSGTXT"') HILITE",

"CNNAME("CMD.CONSNAME")"

RETURN 'ACCEPT'

END

ELSE RETURN /* OK to issue */

Command Rule Example 1 (cont.)
If it was an initiator control command that caused the rule to fire, then the rule
uses the OPSINFO function to retrieve the name of the master console. It then
verifies that the command was issued from the master console. If not, the rule
rejects the command and sends a WTO back to the originating console that
indicates initiator control commands are only allowed at the master console.

Lesson 3 - Understanding Rules

PV001 3 - 35 Computer Associates

3 - 35

Command Rule Example 2
)CMD VNET

)PROC

/* The purpose of this pseudo CMD rule is to give operators */

/* or anyone wanting to cycle any VTAM node, a tool to */

/* facilitate the issuing of the V NET,INACT and V NET,ACT */

/* commands with one command . From any console you simply */

/* enter 'VNET nodeid' and the logic of this rule will simply*/

/* issue a V NET,INACT and then a V NET,ACT command to the */

/* extracted nodeid using the console that invoke the pseudo */

/* command so that the command responses get routed back. */

NODEID= WORD(CMD.TEXT,2) /* get the passed node id */

ADDRESS OPER /* Issue vtam command .*/

"C(V NET,INACT,ID="NODEID",F) CONNAME("CMD.CONSNAME")"

"C(V NET,ACT,ID="NODEID",SCOPE=ALL) CONNAME("CMD.CONSNAME")"

RETURN 'ACCEPT' /* MVS won't see pseudo cmd */

Command Rule Example 2
The example is of a rule that uses a pseudo command rule to cycle a VTAM
node.

Lesson 3 - Understanding Rules

PV001 3 - 36 Computer Associates

3 - 36

Message Rule

Allows you to:
– Suppress message
– Respond to WTOR message
– Change text of message
– Route message to new destination
– Change color and highlighting of message
– Activate procedures to monitor your system
– Save system status data

Message Rule
A rule responds to a message if the message identifier matches the rule’s
message ID specification. The message identifier is usually the first word of the
message.

Use this format when coding the message event definition section:
)MSG msgidspec [NOOPSLOG]

Follow these guidelines when specifying the character string for the msgidspec
message ID specifier:

Specify one to ten characters.
The string cannot contain embedded blank spaces.
You can use the wildcard (*) character.
Lowercase letters are acceptable, but the AOF converts them to
uppercase for event testing.

Lesson 3 - Understanding Rules

PV001 3 - 37 Computer Associates

In general, Unicenter CA-OPS/MVS messages cannot be processed by
the AOF. However, messages that have a severity code of O or J are
exceptions to this rule.
You can change the severity code of a Unicenter CA-OPS/MVS
message ID by using the OPSPRM() REXX function in the OPSSPA00
member of the SYS1.PARMLIB data set.
Example: The OPS2085O message is one example of a message that
is automateable by default. Suppose that you want to change the
severity code of message so that no message rule responds to it. You
could use this statement:

T = OPSPRM_Set("OPS2085","H")

NOOPSLOG Option
The NOOPSLOG option prevents a message (specified by msgidspec) from
appearing in the OPSLOG.

Warning! Use the NOOPSLOG option carefully to avoid losing system
information necessary for effective automation.

Note: You cannot remove all message event records from the OPSLOG. For
example, specifying MSG * NOOPSLOG causes the AOF to ignore the
NOOPSLOG option. The NOOPSLOG option will be ignored if the msgidspec
contains an imbedded wildcard (*) character (for example, IST*I). The
NOOPSLOG option is acknowledged only for complete msgidspecs (for example,
IST123I) or for a prefix msgidspec (for example, IST*).

Valid Return Values
The OPS/REXX RETURN statement specifies the final disposition of a message.
The RETURN statement can:

Allow z/OS to route a message normally.
Prevent a message from appearing on the console.
Prevent a message from appearing in the SYSLOG log file.
Suppress a message.
Override a return value specified by a prior rule.

Lesson 3 - Understanding Rules

PV001 3 - 38 Computer Associates

Valid values for a RETURN statement in the processing section of a message
rule are:

NORMAL
Allows z/OS to route a message normally.

SUPPRESS
Prevents a message from appearing on the console. The message
appears in the OPSLOG.
Note: IMS command response segment messages that are
destined for the MTO terminal cannot be modified or canceled. For
messages of this type, the SUPPRESS value is ignored.

DISPLAY
Prevents a message from appearing in the SYSLOG log file. The
message appears on the console.

DELETE
Suppresses a message entirely. The message does not appear on
the console or in the SYSLOG log file.

FORCENORMAL
Allows z/OS to route a message normally, but overrides any return
value that was specified by a prior rule.

Default —RETURN "NORMAL".
Notes: The return values listed here are character constants, rather
than keywords.
An unrecognized return value—for example, a misspelled value—
defaults to a value of NORMAL.

Other RETURN Statement Considerations
Consider the following when specifying the RETURN statement in the processing
section of a message rule:

If multiple rules respond to a single message event, the AOF uses the
highest-precedence return value. The order of precedence is:

DELETE (highest precedence)
DISPLAY
SUPPRESS
NORMAL (lowest precedence)

Lesson 3 - Understanding Rules

PV001 3 - 39 Computer Associates

Note: The FORCENORMAL return value overrides the order of
precedence and is meaningful when multiple rules execute for a
message. For example, if the first rule returns the SUPPRESS value
and the last rule returns the FORCENORMAL value, the message
appears on the appropriate consoles. However, subsequent rules may
successfully use the SUPPRESS, DISPLAY, and DELETE return
values.

The DELETE and DISPLAY return values work as described only if the
AOFDELETE parameter is set to YES (the default setting). If the AOFDELETE
parameter is set to NO, the rule processes a message as though the DELETE
return value is SUPPRESS and the DISPLAY return value is NORMAL.

Lesson 3 - Understanding Rules

PV001 3 - 40 Computer Associates

3 - 40

Message Rule Example 1
)MSG $HASP426
)INIT
/***/
/* VERIFY RULE IS ONLY ENABLED ON OUR DEVELOPMENT SYSTEM */
/***/
IF OPSINFO('SMFID') ¬= 'SYST' THEN RETURN 'REJECT'
)PROC
/***/
/* REPLY COLD TO THE JES2 INITIALIZATION WTOR MESSAGE */
/* MSGTXT - IDNUM $HASP426 SPECIFY OPTIONS - SYST */
/***/
ID = MSG.REPLYID /* GET REPLYID FROM EVENT VARIABLE*/
ADDRESS OPER /* SET ENVIRONMENT TO ISSUE CMDS */

"R "ID",COLD" /* ISSUE MVS REPLY COMMAND */

Lesson 3 - Understanding Rules

PV001 3 - 41 Computer Associates

3 - 41

Message Rule Example 2
)MSG IEF450I
/**/
/* MANIPULATE JOB ABEND MESSAGES USING THE FOLLOWING CRITERIA */
/* -SUPPRESS ALL IEF450I EXCEPT THOSE PREFIXED WITH P (PROD) */
/* -HILIGHT THE ABEND MESSAGE IF JOBNAME = PMNTHEND */
/* -INVOKE ACCTRECV OPS/REXX PROGRAM FOR ALL PACCT* JOBS */
/* -START DRECOVER JOB IF PDAILY1 ABENDS WITH S000 & U0004 */
/* IEF450I AMAJA03 CATSO CATSO - ABEND=S000 U0004 REASON=0000 */
/* TIME=08.00.18 */
/**/
)PROC
IF MSG.MLWTOMIN = 1 THEN RETURN /* NO NEED TO LOOK AT 2ND LINE */
JOB = MSG.JOBNAME /* GET THE JOBNAME THAT ABENDED*/
IF SUBSTR(JOB,1,1) ¬= 'P' THEN /* SUPPRESS ALL NON PROD JOBS */

RETURN 'SUPPRESS'
/**/
/* FURTHER MANIPULATE THE ABENDING PRODUCTION JOB */
/**/
SELECT

/* HILITE MESSAGE IF PMNTHEND ABENDED SETTING DESCRIPTOR */
/* CODE VARIABLE VIA THE OPS/REXX OPSBITS FUNCTION */

WHEN JOB = 'PMNTHEND' THEN DO
MSG.DESC=OPSBITS('HILITE')
END /*END OF PMNTHEND CHECK*/

Lesson 3 - Understanding Rules

PV001 3 - 42 Computer Associates

3 - 42

Message Rule Example 2 (continued)

/* IF PDAILY1 ABENDS START DRECOVER JOB ONLY IF ABEND CODE */
/* IN MESSAGE IS 'S000' WITH A USER CODE OF 'U0004' */
/* USE REXX PARSE INSTRUCTION TO BREAK DOWN THE MESSAGE */

WHEN JOB = 'PDAILY1' THEN DO
PARSE VAR MSG.TEXT . 'ABEND=' ACODE UCODE .
IF ACODE = 'S000' & UCODE = 'U0004' THEN DO

ADDRESS OPER
"C(S DRECOVER)”

END /*END OF CODE CHECKS */
END /*END OF PDAILY1 CHECK */

/* TRIGGER THE ACCTRECV OPS/REXX PROGRAM TO A SERVER IF */
/* THIS IS A PROD ACCOUNTING JOB (PACCT*). PASS THE JOB */
/* TO THE EXEC. WE HAVE TO INVOKE THE EXEC IN THE SERVER */
/* BECAUSE IT WILL BE ISSUING WTORS TO OPERATIONS AND WILL */
/* MANIPULATE THE REPLY RESPONSES. NO WAITING IN RULES!!! */
WHEN SUBSTR(JOB,1,5) = 'PACCT' THEN DO

ADDRESS OSF /* SHIP TO SERVER */
"OI P(ACCTRECV) ARG("JOB")"

END /* END OF PACCT CHECK */
OTHERWISE RETURN 'NORMAL' /* NOT A SPECIAL CASE */

END /* END OF SELECT */

Lesson 3 - Understanding Rules

PV001 3 - 43 Computer Associates

3 - 43

Security Rule

Allows you to protect Unicenter
CA-OPS/MVS facilities

Security Rule
A rule that responds to a security event provides an easy-to-use method for
protecting Unicenter CA-OPS/MVS facilities. Unlike an assembler language
authorization exit, a security rule is easy to write, implement, and update.

A security event occurs when a Unicenter CA-OPS/MVS facility is used.

Use this format when coding the security event definition section:
)SEC facility||eventqualifier

The facility security event specifier is one of the following character strings
specifying a Unicenter CA-OPS/MVS facility:

OPSAOF
An ADDRESS AOF host command issued from within an
OPS/REXX program.

Lesson 3 - Understanding Rules

PV001 3 - 44 Computer Associates

OPSBRW
OPSBRW command processor used to view entries in the OPSLOG
Browse facility.

OPSCMD
OPSCMD command processor or OPS/REXX ADDRESS OPER
command, used to issue operator commands.

OPSCTL
ADDRESS OPSCTL host environment, used to control the Multi-
System Facility (MSF).

OPSDOM
OPSDOM command processor used to delete an outstanding
message.

OPSEPI
ADDRESS EPI host command issued from within an OPS/REXX
program.

OPSGLOBAL
OPS/REXX global variable that is accessed or updated.

OPSHFI
OPSHFI command or REXX function, used to read, write, or delete
variable records from shared VSAM file supporting global variables.

OPSLOG
Unicenter CA-OPS/MVS API request (processed by the Automation
Analyzer).

OPSOSF
ADDRESS OSF host command issued from within an OPS/REXX
program.

OPSPARM
OPSPARM command processor or OPS/REXX OPSPRM function
used to change OPS/MVS parameter values

OPSREPLY
OPSREPLY command processor used to reply to WTOR
messages.

OPSREQ
OPSREQ command processor, used to invoke AOF request rules.

OPSRMT
OPSRMT command processor used to issue a command to a
remote system.

Lesson 3 - Understanding Rules

PV001 3 - 45 Computer Associates

OPSSMTBL
OPSSMTBL command processor, used to maintain the directory
table that System State Manager uses to manage tables containing
system resource information.

OPSWTO
OPSWTO command processor or the ADDRESS WTO host
environment, used to send WTO or WTOR messages.

SQL
OPSQL command processor or the ADDRESS SQL host
environment, used to issue Structured Query Language (SQL)
commands.

SUBSYSDSN
Unicenter CA-OPS/MVS subsystem data set that is opened.

OPSVIEW
OPSVIEW command processor used to invoke OPSVIEW interface

The eventqualifier value is a character string that specifies a subset of the facility
security event specifier. Follow these guidelines when specifying the
eventqualifier value:

Concatenate the string with the facility string.
Both strings must be connected with no blank spaces between them.
For all facility values except OPSCMD and OPSGLOBAL, specify only
a wildcard (*) character.
Example —)SEC OPSBRW*

For OPSCMD, specify a full command verb (rather than an
abbreviation or alias), followed by the wildcard (*) character.
For OPSGLOBAL, specify up to 41 characters of the global variable
name, followed by the wildcard (*) character.
Example: The facility and eventqualifier combination in this security
event definition matches all global variables beginning with the
GLOBAL1.FOOVAR prefix:

)SEC OPSGLOBALGLOBAL1.FOOVAR*

Lowercase letters are acceptable, but the AOF converts them to
uppercase for event testing.

Lesson 3 - Understanding Rules

PV001 3 - 46 Computer Associates

Valid Return Values
The OPS/REXX RETURN statement specifies the final disposition of a security
event. The RETURN statement can:

Refer a security event to the OPUSEX security exit.
Force OPS/MVS to deny access to a requested facility.
Allow access to a requested facility.
Valid values for a RETURN statement in the processing section of a
security rule are:

NOACTION
Allows the event to occur with no intervention from the AOF.
Unicenter CA-OPS/MVS passes the event to the OPUSEX
security exit after AOF processing (if any).

ACCEPT
Allows access to the requested facility and does not call the
OPUSEX exit

REJECT
Denies access to the requested Unicenter CA-OPS/MVS facility
and does not call the OPUSEX security exit

Default —RETURN "NOACTION"
Note: The return values listed here are character constants, rather
than keywords.
An unrecognized value—for example, a misspelled value—defaults to a
value of NOACTION.

Other RETURN statement considerations:
If multiple rules respond to a single security event, the AOF uses the
highest-precedence return value. The order of precedence is:

REJECT (highest)
ACCEPT
NOACTION (lowest)

Lesson 3 - Understanding Rules

PV001 3 - 47 Computer Associates

3 - 47

Security Rule Example 1
)SEC OPSBRW*

)PROC

/* Do not let user IMGR8 use OPSLOG Browse */

IF SEC.OPAUJBNA = 'IMGR8' THEN

DO

SEC.OPAUERMG = 'YOU ARE NOT AUTHORIZED'

RETURN REJECT

END

RETURN ACCEPT

)END

Lesson 3 - Understanding Rules

PV001 3 - 48 Computer Associates

3 - 48

Security Rule Example 2
)SEC OPSREQ*

)PROC

IF SEC.OPAUUSID <> "TSOID1" & ,

SEC.AURQFUCD = "CANUSER" THEN

RETURN "REJECT"

ELSE

RETURN "ACCEPT"

Lesson 3 - Understanding Rules

PV001 3 - 49 Computer Associates

3 - 49

Time-of-Day Rule

Allows you to take action at a certain
time or after a specified time interval
– Perform command sequences necessary for

shift changes
– Periodically check samples of system

information
– Check availability of subsystems and started

tasks

Time-of-Day Rule
A rule that responds to a time-of-day event takes some action at a certain time or
after a specified time interval. For example, time-of-day (TOD) rules can:

Perform the command sequences necessary for shift changes.
Periodically check samples of system information.
Check the availability of subsystems and started tasks.

A rule responds to a TOD event when z/OS timer associated with event expires.
(Unicenter CA-OPS/MVS maintains a list of pending TOD events.) The time or
date (or both) that you specify in a rule’s event definition section determines when
z/OS timer expires.

Use this format when coding the TOD event definition section:
)TOD todspec1 [,interval] [,endtodspec] [,maxexecs]
[,msgallow][,catchval] [,synch]
[todspec2 [,interval] [,endtodspec] [,maxexecs]
[todspec3 [,interval] [,endtodspec] [,maxexecs]
. . .

[todspec10 [,interval] [,endtodspec] [,maxexecs]

Lesson 3 - Understanding Rules

PV001 3 - 50 Computer Associates

Follow these guidelines when specifying the todspec value:
You can specify a date or time, or both, in any order.

If you omit the date —The rule executes every day.
If you omit the time —The rule executes at midnight.

Note: If you specify both a date and a time, separate them with a
space.
To instruct a rule to execute after enablement at a specified interval,
you can use this format for the todspec value:

*+nn value
where nn is a number greater than 0, and value is DAY(S),
WEEK(S), HOUR(S), MINUTE(S) or MIN(S), or SECOND(S) or
SEC(S). For example, the following rule executes 1 minute after it is
enabled and every 30 seconds thereafter, until it executes a total of
three times:

)TOD *+1 MINUTE,30 SECONDS,,3

Uppercase or lowercase letters are acceptable.
The event definition specifier can contain up to ten todspec values.
Note: If you specify more than one todspec value, place each one
on a separate line.

In addition to the date and time, you can specify one or more optional qualifiers to
further define your todspec TOD specifier.

Note: Although you can specify the msgallow, catchval, and synch qualifiers only
once within a rule, you may specify them on any line of the TOD event definition
section. You do not have to specify these three qualifiers on the same line with
each other; you may specify them in any combination you wish. The values of
these qualifiers apply to all todspec values in that rule.

Interval
The amount of time—that is, the number of specified time units—
that the AOF waits between rule executions.

endtodspec
The ending TOD specifier. The todspec value no longer triggers the
rule once the specified date and/or time has occurred.
Note: The endtodspec value, if specified, must match the format of
the todspec value.

Lesson 3 - Understanding Rules

PV001 3 - 51 Computer Associates

Maxexecs
The maximum number of times the rule can execute. The todspec
value no longer triggers the rule once this limit has been reached.

Msgallow
Allows or suppresses the OPS3900O message, indicating the next
TOD setting for a rule. Do not specify the msgallow qualifier more
than once within a rule. Valid values are:

MSG, which allows the message
NOMSG, which suppresses the message
Default —MSG

catchval
Determines whether catch-up processing occurs for the rule. Do not
specify the catchval qualifier more than once within a rule. Valid
values are:

CATCHUPYES - perform catch-up processing for this rule.
CATCHUPNO - do not perform catch-up processing for this
rule.
CATCHUPMAN - ask the operator whether this rule requires
catch-up processing.
Default —CATCHUPNO

Important! Neither CATCHUPYES nor CATCHUPMAN may be
specified on the TOD rule specification when enabling a dynamic
TOD rule. Attempting to do so causes a syntax error, and the rule is
not enabled.

Synch
Determines whether TOD rule execution is synchronized on a
rounded interval boundary. Do not specify the synch qualifier more
than once within a rule. Valid values are:

SYNCH - rule execution is synchronized.
NOSYNCH - rule execution is not synchronized.
Default —SYNCH

The SYNCH value does not apply to TOD rules that specify a time
to execute after enablement (that is, rules in which the *+nn value
format is used). These rules always execute with a NOSYNCH
value.
Important! The optional todspec qualifiers are position-dependent. If
you want to omit a qualifier but want to specify the next one, insert a
place-holding comma in place of the omitted qualifier.

Lesson 3 - Understanding Rules

PV001 3 - 52 Computer Associates

The OPS/REXX RETURN statement has no special meaning in the processing
section of a time-of-day rule. The return value has no effect on AOF processing.

When coding the event definition section of a TOD rule, you can specify a date or
time, or both (in any order). Specifying an interval is optional.

Date TOD Specifier
Any of these formats is acceptable for specifying the date specifier:

dd MMM year
yy/mm/dd
weekday:

dd
A two-digit integer (01 through 31) corresponding to a day of the
month.

MMM
One of the following three-character abbreviations for a month: JAN,
FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, or DEC.

year
A four-digit year (for example, 2003).
Note: The first two digits of year (indicating the century) are
optional. For example, you can abbreviate 1999 to 99.

Yy
A two-digit integer (for example, 03) corresponding to a year.

mm
A two-digit integer (01 through 12) corresponding to a month of the
year.

weekday
The full name of a weekday (for example, SUNDAY, MONDAY).

Lesson 3 - Understanding Rules

PV001 3 - 53 Computer Associates

Time TOD Specifier
Use this format for specifying the time specifier:

hh:mm[:ss]

hh A two-digit integer (00 through 23) indicating the hour.
mm A two-digit integer (00 through 59) indicating the minutes

after the hour.
ss A two-digit integer (00 through 59) indicating the seconds

after the minute. This value is optional.

Interval TOD Specifier
Use this format for specifying the interval specifier:

n interval

Note: You can also use the 24-hour military time format described earlier in this
section.

n An integer multiplier indicating the number of interval time
units interval.
One of the following time units: DAY(S), WEEK(S),
HOUR(S), MINUTE(S) or MIN(S), SECOND(S) or SEC(S).

Examples - 2 WEEKS, 30 SECS, 1 MIN, 30 DAYS

Lesson 3 - Understanding Rules

PV001 3 - 54 Computer Associates

3 - 54

Time-of-Day Rule Examples

)TOD SUNDAY,5 MIN

)TOD SUNDAY,5 MIN,,,,,NOSYNCH

)TOD FRIDAY,15 MIN

)TOD MONDAY,1 HOUR,SATURDAY

Time-of-Day Rule Examples
Below are examples of various TOD rules. In the following examples, a week runs
from Sunday to Saturday.

This rule executes every day of the week, every five minutes, on a five-
minute boundary from midnight:

)TOD SUNDAY,5 MIN

This rule executes every day, every five minutes, on a five-minute
boundary from the time the rule is enabled:

)TOD SUNDAY,5 MIN,,,,,NOSYNCH

This rule executes every 15 minutes on Friday and Saturday:
)TOD FRIDAY,15 MIN

This rule executes every hour, Monday through Friday:
)TOD MONDAY,1 HOUR,SATURDAY

Lesson 3 - Understanding Rules

PV001 3 - 55 Computer Associates

3 - 55

Time-of-Day Rule Examples (continued)

)TOD 12:00,30 MIN,15:00

)TOD 08:00,,,7

)TOD 01:00,,,,,CATCHUPYES

)TOD 27 DEC 1999 08:00,1 HOUR,
28 DEC 1999 08:00

Time-of-Day Rule Examples
Below are more examples of TOD rules. Remember that a week runs from
Sunday to Saturday.

This rule executes every half hour from 12:00 to 15:00, every day:
)TOD 12:00,30 MIN,15:00

This rule executes every day at 8:00 for the next seven days:
)TOD 08:00,,,7

This rule executes every day at 01:00 and it will catch up if Unicenter
CA-OPS/MVS is down:

)TOD 01:00,,,,,CATCHUPYES

This rule executes from 8:00 December 27 through 7:00 December 28:
)TOD 27 DEC 1999 08:00,1 HOUR, 28 DEC 1999 08:00

Lesson 3 - Understanding Rules

PV001 3 - 56 Computer Associates

3 - 56

Lesson Summary

In this lesson, you learned to:
Describe the AOF
Describe rules, where they reside, and how
they are created
Recognize and interpret different types of
rules

Lesson 3 - Understanding Rules

PV001 3 - 57 Computer Associates

3 - 57

Lesson 3 Assessment

Lesson 3 Assessment
Note: A week runs from Sunday to Saturday.

1. True/False: AOF rules contain OPS/REXX programs.

2. When would this rule execute?)TOD 06:00,,,6

3. What is the major function of the AOF?
__

4. Which rule section specifies the actions the rule takes when it becomes
enabled?

Lesson 3 - Understanding Rules

PV001 3 - 58 Computer Associates

Lesson 3 Assessment (continued)
5. True/False: Each rule set is a separate data set.

6. When would this rule execute?)TOD 07:30,,,,,CATCHUPYES

7. Name three methods for writing rules.

8. Which rule type can be used as an effective tool for operators to perform the
necessary command sequences for shift changes?

9. Which rule section specifies the system event that causes the rule to
execute?

10. True/False: A rule must contain an)END statement.

11. How does the AOF recognize and respond to events?

12. Which rule type enables you to create a new command?

13. When would this rule execute?)TOD 02:00

14. Which rule section specifies the action the rule takes when it is disabled?

Lesson 3 - Understanding Rules

PV001 3 - 59 Computer Associates

Lesson 3 Assessment (continued)
15. True/False: Rules always execute in a predictable order.

16. Which part of a rule marks the end of the rule?

17. Which rule section specifies the action to take in response to the system
event that triggered the rule?

18. True/False: Rules are stored within rule sets.

19. Which rule type enables you to respond to a WTOR message?

20. When would this rule execute?)TOD *+2 MINUTES, 15 SECONDS,,5

Lesson 3 - Understanding Rules

PV001 3 - 60 Computer Associates

Notes:

Lesson 4 - AOF RETURN Statement

PV001 4 - 1 Computer Associates

ca.com

AOF RETURN Statement

Lesson 4

Lesson 4 - AOF RETURN Statement

PV001 4 - 2 Computer Associates

4 - 2

Lesson Objectives

After this lesson, you will be able to:
Describe the AOF RETURN statement

Lesson 4 - AOF RETURN Statement

PV001 4 - 3 Computer Associates

4 - 3

RETURN Statement

Guides the AOF’s actions
Uses
– Suppressing messages from console or

SYSLOG
– Rejecting system commands
– Validating rule enablement or disablement

Values vary according to rule section
that is processing it

RETURN Statement
The AOF RETURN statement allows you to:

Create logic in AOF rules to suppress messages from appearing on the
console or in SYSLOG.
Reject system commands.
Validate rule enablement or disablement.

OPS/REXX fully supports the RETURN statement. AOF RETURN statement
values vary according to the rule section that is processing the statement. The
)INIT,)TERM, and)PROC sections of AOF rules are OPS/REXX programs called
by the AOF. The values returned by these rule sections (via the RETURN
statement) guide the AOF’s actions. For example, if a)INIT section returns
“REJECT,” the rule is neither enabled nor executed.

Lesson 4 - AOF RETURN Statement

PV001 4 - 4 Computer Associates

4 - 4

How Rule Sections Process RETURN

Event Definition

Initialization

Processing

Termination

)INIT

)PROC

)TERM

How Rule Sections Process the RETURN Statement
)INIT Section

The RETURN statement in the)INIT section of an AOF rule allows or
disallows a rule’s enablement. Creating logic to prevent a rule from
being enabled may be necessary in an environment in which you have
multiple Unicenter CA-OPS/MVS images sharing rule sets and you only
want particular rules to be enabled on certain systems.
Valid values for a RETURN statement in a rule’s initialization section
are:

ACCEPT
Allows the rule to be enabled.

REJECT
Prevents the rule from being enabled.

If you do not specify a return value, the default value is ACCEPT.
If a run-time error occurs, the return value is ACCEPT (assuming that
the error occurs while the initialization section is executing).

Lesson 4 - AOF RETURN Statement

PV001 4 - 5 Computer Associates

)PROC Section
The RETURN statement in the)PROC section of an AOF rule affects
the disposition of the event. It works differently according to the type of
event the rule is acting upon. That is, the RETURN statement in a
)MSG rule has different values than those in a)CMD rule.
Valid RETURN statement values for the)PROC section of each rule
type are identified in the OPS/MVS documentation. It is important to
understand the effect of each value before writing any of the AOF rule
types.

)TERM Section
The RETURN statement in the)TERM section of an AOF rule allows or
disallows a rule’s disablement.
Valid values for a RETURN statement in a rule’s termination section
are:

ACCEPT
Allows the rule to be disabled

REJECT
Prevents the rule from being disabled

If you do not specify a return value, the default value is ACCEPT.
If a run-time error occurs, the return value is ACCEPT (assuming that
the error occurs while the termination section is executing).
Note: A return value of REJECT stops the disablement of a single rule
only. If you disable a rule set, the enabled rules within the rule set are
always disabled, regardless of the RETURN values in the individual
rules.
Examples for each rule section follow.

Lesson 4 - AOF RETURN Statement

PV001 4 - 6 Computer Associates

4 - 6

Lesson 4 - AOF RETURN Statement

PV001 4 - 7 Computer Associates

4 - 7

RETURN)PROC Examples
)MSG $HASP100
)PROC
/* Suppress $HASP100 message using the SUPPRESS RETURN */
/* value available in)MSG rules. */
RETURN 'SUPPRESS'

)CMD MOVECICS
)PROC
/* This pseudo command rule allows operators to enter */
/* the command MOVECICS from the console to initiate the */
/* OPS/REXX program to move all cics regions. The RETURN */
/* value of ‘ACCEPT’ in a)CMD rule causes MVS to not */
/* process this pseudo command. */
ADDRESS OSF

"OI P(MOVECICS)"
RETURN 'ACCEPT'

Lesson 4 - AOF RETURN Statement

PV001 4 - 8 Computer Associates

4 - 8

Lesson 4 - AOF RETURN Statement

PV001 4 - 9 Computer Associates

4 - 9

Lesson Summary

In this lesson, you learned to:
Describe the AOF RETURN statement

Lesson 4 - AOF RETURN Statement

PV001 4 - 10 Computer Associates

Notes:

Lesson 5 - Using EasyRule

PV001 5 - 1 Computer Associates

ca.com

Using EasyRule

Lesson 5

Lesson 5 - Using EasyRule

PV001 5 - 2 Computer Associates

5 - 2

Lesson Objectives

After this lesson, you will be able to:
Describe and access EasyRule
Write rules using EasyRule

Lesson 5 - Using EasyRule

PV001 5 - 3 Computer Associates

5 - 3

EasyRule

z/OS

Unicenter CA-OPS/MVS

Automated Operations Facility
(AOF)

Automation
Analyzer EasyRule OPS/REXX OPSLOG

OPSVIEW

EasyRule
EasyRule is a user-friendly, panel-driven facility that walks you through
the AOF rule creation and modification processes. It enables you to
build Unicenter CA-OPS/MVS rules without the need for programming.
EasyRule is an online OPSVIEW facility that offers a “fill-in-the-blanks”
approach to building a rule. EasyRule not only makes generating rules
fast and easy, but also makes updating them quick and convenient.
Because you can use EasyRule to generate complex rules, even the
most experienced REXX programmer will appreciate the savings in
labor that EasyRule provides for producing sophisticated programming.
In addition, the rules that you create with EasyRule are readily available
for tailoring and maintenance.
The REXX code that is generated by EasyRule contains descriptive
REXX comments that describe the conditions and actions that are
being performed. This makes generated REXX code easier to
understand. It also makes EasyRule more useful as a way for someone
unfamiliar with the REXX language to learn REXX.
To use EasyRule, you must be familiar with ISPF line editing and
navigation, and you must understand how the console works.

Lesson 5 - Using EasyRule

PV001 5 - 4 Computer Associates

How Does EasyRule Build Rules?
EasyRule is comprised of numerous fill-in-the-blanks panels. As you
create your rule, EasyRule keeps track of the entries you make on each
panel. Your entries will include such information as events, conditions,
and actions that affect the rule’s execution.
When you finish making entries on the panels, EasyRule generates the
rule as OPS/REXX code and retains it in memory. (EasyRule generates
OPS/REXX code in mixed case.)
On the final EasyRule panel you encounter, you must choose to take
one of these actions for the new rule:

– Save the rule and exit EasyRule.
– Exit EasyRule without saving the rule.
– Browse the OPS/REXX code that EasyRule generated.
– Return to the EasyRule panels to alter the rule.

If you choose to save the rule, you can then enable, test, and disable it
just as you would any other rule. Finally, you can move the rule to the
production environment.

How Will EasyRule Benefit Me?
If you are a novice user, you can use EasyRule to generate most of the
automation you need with just a few panel entries.
If you are an advanced user, you can use EasyRule to generate
enough OPS/REXX code to create a basic rule. Later, you can use
ISPF’s editing tools to add more complex logic to the rule.
The code that EasyRule generates is clean and efficient. Therefore, if
your interests are in learning how to write OPS/REXX code, you can
browse the rules EasyRule generates to learn about the OPS/REXX
language.

Guidelines for Using EasyRule
You can use EasyRule to create a new rule or to modify a rule that was
originally created with EasyRule. However, if you used another editing
tool to create a particular rule, you cannot use EasyRule to modify it.
If you wish, you can select EasyRule’s automatic step-through feature,
which takes you from one fill-in-the-blanks panel to the next without
your having to make menu selections.

Lesson 5 - Using EasyRule

PV001 5 - 5 Computer Associates

After you access EasyRule, you must decide how you want to proceed:
manually or automatically. The EasyRule Primary panel prompts you
for your choice. If you want to move through EasyRule’s panels by
making menu selections, type N in response to the prompt. If you want
EasyRule to move you from one fill-in-the-blanks panel to the next,
without presenting you with menus, type Y in response to the prompt.
Anytime that you want information while using EasyRule, such as an
example or the definition of an unfamiliar term, you can press PF1/13 to
access EasyRule help.
Do not imbed syntax for REXX comments (for example, /* comment-
text */) within your panel entries.

About EasyRule Panels
To help you to build a rule, EasyRule presents you with a series of
panels that are dependent upon the type of rule you want to create.
Although each set of panels is unique to the type of rule you are
creating, there are similarities among them in both format and content.
For example, regardless of the type of rule you are creating, EasyRule
will present a Primary Event Specification Panel on which you specify
the primary criterion that is used to execute the rule. For example, if
you are creating an OMEGAMON rule, EasyRule presents you with a
panel that prompts you to specify an OMEGAMON exception ID; if you
are creating a message rule, a panel that prompts you for a message
ID appears instead.

Accessing More Information About a Panel
If you need more specific information about how to use a particular
EasyRule panel, press PF1/PF13 to access help directly from that
panel.

Lesson 5 - Using EasyRule

PV001 5 - 6 Computer Associates

5 - 6

Accessing EasyRule
Automation Analyzer --- XE09 --- O P S V I E W ------------ ROW 1 to 19 of 100
COMMAND ===> SCROLL ===> PAGE

Sel options: E - Easy Rule S - Suppress Message D - Delete Message
Q - Quick-Ref X - Extract Replies

Analysis done from 2003/01/10 09:00 to 2003/01/10 13:00
Total messages found : 21844
Total messages suppressed: 0 (0.00%)
Message Action # of Percent IBM OPS Ruleset Rule

Sel Identifier Taken Occr of Total Supp Supp.? Name Name
IST663I 859 13.00% 0.0%

E IEF450I 73 0.33% C 0.0%
IST530I 393 5.94% C 0.0%
IST314I 329 4.97% 0.0%
IST664I 329 4.97% 0.0%
IST889I 329 4.97% 0.0%
OPS1000I 312 4.72% 0.0%
OPC4403O 196 2.96% 0.0%
READY 170 2.57% 0.0%
OPS4320H 148 2.24% 0.0%
OPS3724H 121 1.83% 0.0%
OPSWTO 116 1.75% 0.0%
OPU1370H 116 1.75% 0.0%
OPS1181H 102 1.54% 0.0%
$HASP373 99 1.49% C 0.0%
IEA989I 92 1.39% C 0.0%
OPF1290H 86 1.30% 0.0%
OPF1290H 86 1.30% 0.0%

Accessing EasyRule
You can access EasyRule in any of the following ways:

Type 3 in the Option field on the Editors menu and then press Enter.
Use the ISPF jump function by typing =2.3 into any valid field within
OPSVIEW and then pressing Enter.
From the AOF TEST Rule List panel (OPSVIEW option 2.1) or the AOF
CTRL Rule List panel (OPSVIEW option 4.5.1):

– To create a new rule, enter the EASYRULE primary command in
the Command field.

– To modify an existing rule, type R next to the name of the rule
you want to modify and press Enter.

From the Automation Analyzer Results panel (OPSVIEW option 7.2),
type E or R next to the message ID for which you want to create or
modify a rule; then press Enter.

Lesson 5 - Using EasyRule

PV001 5 - 7 Computer Associates

5 - 7

Primary Panel
EasyRule --------------- XE09 --- O P S V I E W --------------- Subsystem OPSS
COMMAND ===>

EEEEE AAAA SSSSS YY YY RRRRR UU UU LL EEEEE
EE AA AA SS YYYY RR R UU UU LL EE
EEEE AAAAAA SSSSS YY RRRRR UU UU LL EEEE
EE AA AA SS YY RR RR UU UU LL EE
EEEEE AA AA SSSSS YY RR RR UUUU LLLLL EEEEE

ISPF LIBRARY:
PROJECT ===> TSOUSER
GROUP ===> OPS
TYPE ===> RULES
MEMBER ===> IEF450I

OTHER PARTITIONED DATA SET:
DATA SET NAME ===>

Do You Wish To AUTOMATICALLY step thru EasyRule? ===> N (Y/N)

Press END to return

Primary Panel
After you access EasyRule using one of the methods described previously, you
will see a display similar to the one shown above.

Before you can create or modify a rule, you must tell EasyRule the name of the
rule set that will contain (or already contains) the rule. You will use the Project,
Group, and Type fields to do so:

PROJECT ===> ruleprefix

GROUP ===> rulesetname

TYPE ===> rulesuffix

You must also specify a new or existing member name in the member field. Each
member of a rule set contains a single rule.

Action: Complete the panel as shown above and then press Enter. (In place of
TSOUSER, type the user ID given to you by your instructor.) The Rule Type
Selection panel appears.

Lesson 5 - Using EasyRule

PV001 5 - 8 Computer Associates

5 - 8

Select Rule Type
EasyRule ---
OPTION ===> 1

R U L E T Y P E S E L E C T I O N

1 MSG - Create Message Event Rule
2 CMD - Create Command Event Rule
3 GLV - Create Global Variable Event Rule
4 TOD - Create Time-Of-Day Event Rule
5 OMG - Create OMEGAMON Event Rule
6 DOM - Create Delete-Operator-Message Event Rule
7 EOJ - Create End-Of-Job Event Rule
8 EOM - Create End-Of-Memory Event Rule
9 EOS - Create End-Of-Step Event Rule
10 TLM - Create Time-Limit-Exceeded Event Rule
11 USS - Create Unix Systems Services (USS) Message Event Rule

Select Rule Type
When you specify the member name for a new rule on the EasyRule Primary
Panel, the Rule Type Selection panel appears, shown above.

Note: If you specified an existing rule on the EasyRule Primary panel, EasyRule
bypasses the panel shown above and takes you directly to the series of panels
you can use to modify the rule.

To select a rule type, enter its code into the Option field.

Action: For our example, we will be creating a message rule. Type a 1 in the
Option field and then press Enter. The Message Rule Main Menu displays.

Lesson 5 - Using EasyRule

PV001 5 - 9 Computer Associates

5 - 9

Main Menu
EasyRule ---

M E S S A G E R U L E M A I N M E N U

1 MESSAGE ID - Specify the ID of the message(s) to be processed
2 DOCUMENTATION - Add comments to this Rule
3 CONDITIONS - Supply additional criteria for this Rule to fire
4 ACTIONS - Take action with respect to the message(s)

5 INITIALIZATION - One-time initialization done when Rule is ENABLEd
6 TERMINATION - Specify actions to be taken when Rule is DISABLEd

OPTION ===> 1

Main Menu
EasyRule provides a main menu for each type of rule. The main menu for
message rules is shown above.

Action: We will specify a message ID next, so type a 1 in the Option field and
then press Enter. The Primary Event Specification panel displays.

Lesson 5 - Using EasyRule

PV001 5 - 10 Computer Associates

Menu Options
Although there is a unique rule type Main Menu for every type of rule you can
create with EasyRule, all the panels offer similar options:

1. Accesses a panel on which you specify the primary selection criterion
for this type of rule. For example, if you are creating a command rule,
specify the command; if you are creating an OMEGAMON rule, specify
the exception ID.

2. Accesses a panel on which you enter comments for the rule. EasyRule
incorporates your comments into the OPS/REXX code it generates for
the rule. This panel is the same regardless of what type of rule you are
creating.

3. Accesses a submenu from which you can choose conditions for
EasyRule to use as selection criteria for the rule. The content of this
submenu varies for different types of rules. These conditions are in
addition to the primary selection criterion you specify with option 1.

4. Accesses a submenu from which you specify the actions the rule
should take when the conditions set in option 3 are met (if any). If no
conditions are set in option 3, the actions you specify within option 4 will
occur unconditionally. The content of this submenu is different for each
type of rule.

5. Accesses a panel on which you specify what systems the rule is
initialized and the initial values of local and global variables. EasyRule
performs the initialization when the rule is first enabled. This panel is
the same for all types of rules.

6. Accesses a panel on which you specify the actions Unicenter
CA-OPS/MVS should take when the rule is disabled. Possible actions
include sending messages, setting global variables, and so on. This
panel is the same for all types of rules.

Lesson 5 - Using EasyRule

PV001 5 - 11 Computer Associates

5 - 11

Specify Event
EasyRule --
COMMAND ===>

S P E C I F Y M E S S A G E I D

MSG ID => IEF450I JUST SUPPRESS ===> N (Y/N/D)
or

JUST DELETE ===> N (Y/N/D)

DELETE FROM OPSLOG === N (Y/N)

MSG ID is used to determine if this Rule should perform an Action.
It must be 1 to 10 characters in length and may optionally include a
"wildcard" character '*'. MSG ID is the only required field.

If you just want to SUPPRESS or DELETE the message, type Y next to the
appropriate entry. Subsequent panels are bypassed if using Step-thru mode.
DELETE is like SUPPRESS, but also deletes the message from SYSLOG.

D is the same as "Y", except that the "Create Rule Comments" panel will be
displayed, allowing you to document the Rule. Default for both fields is N.

Specify Event
Use the Primary Event Specification panel to specify a primary event for your rule.
The primary event is the criterion that is used to execute the rule. For message
rules, the primary event is a message ID; for OMEGAMON rules, it is an
OMEGAMON exception ID, and so on. A sample Primary Event Specification
panel pertaining to message rules is shown above.

When EasyRule generates the OPS/REXX code for your rule, the rule’s type and
the rule’s primary event make up the first line of the code. In some cases, the
only rule type-specific panel that you need to complete to create a rule is the
Primary Event Specification panel. For example, if your goal is simply to suppress
a message, you can do so by making only two field entries (MSG ID and Just
Suppress) on the Primary Event Specification panel for message rules. You can
then press PF3 to access the EasyRule Final Options Menu, from which you can
end your EasyRule session.

Action: Type IEF450I in the MSG ID field and then press Enter. You are returned
to the Message Rule Main Menu.

Lesson 5 - Using EasyRule

PV001 5 - 12 Computer Associates

5 - 12

Create Rule Comments
EasyRule --
COMMAND ===>

C R E A T E R U L E C O M M E N T S

Rule Name ===> IEF450I
Rule Type ===> Message
Rule Function ===> Message rule built by the_________________________

===> Automation Analyzer_______________________________
===> __
===> THIS RULE SUPPRESSES ALL IEF450I MESSAGES.________
===> __
===> __
===> __

Author ===> TNG2908___
Support ===> __
Related Rules ===> __
Related CPs ===> __
History ===> 99/11/17 - Original development___________________

===> __
===> MY FIRST AUTOMATION RULE!!________________________
===> __

Create Rule Comments
Next, we will create comments for the rule using the Create Rule Comments
panel. To access this panel, type a 2 in the Option field on the Message Rule
Main Menu and then press Enter.

A sample panel, the same for all types of rules, is shown above.

The Create Rule Comments panel provides a structured format that you can use
to create useful documentation for your rule.

No editing is performed on your entries, all of which are optional. EasyRule takes
your entries and generates valid REXX comment lines from them. Do not imbed
syntax for REXX comments (for example, /* comment-text */) within your entries.

Action: Complete the panel as shown above and then press PF3. The Message
Rule Main Menu displays.

Lesson 5 - Using EasyRule

PV001 5 - 13 Computer Associates

5 - 13

Final Options Menu
EasyRule --------------- XE09 --- O P S V I E W --------------- Subsystem OPSS
OPTION ===> 3

EEEEE AAAA SSSS YY YY RRRR UU UU LL EEEEE
EE AA AA SS YYYY RR R UU UU LL EE
EEEEE AAAAAA SSSSS YY RRRR UU UU LL EEEE
EE AA AA SS YY RR R UU UU LL EE
EEEEE AA AA SSSS YY RR R UUUU LLLLL EEEEE

1 SAVE - SAVE the Rule that was built and EXIT
2 CANCEL - EXIT and DO NOT SAVE the Rule that was built
3 BROWSE - Browse the generated OPS/REXX code
4 ALTER - Return to the panels to modify the Rule

DO YOU WANT TO BE ABLE TO MODIFY THIS RULE WITH EASYRULE? ==> Y (Y/N)
DO YOU INTEND TO INSERT USER PROCESSING CODE IN THIS RULE? ==> N (Y/N)
DO YOU INTEND TO INSERT USER INITIALIZATION CODE IN THIS RULE? ==> N (Y/N)
DO YOU INTEND TO INSERT USER TERMINATION CODE IN THIS RULE? ==> N (Y/N)

Final Options Menu
You can go to the EasyRule final options menu at any time during the rule
creation or update process. This menu is automatically encountered while exiting
EasyRule.

The final options menu allows you to save the rule, cancel the creation or
changes made to the rule, browse the current OPS/REXX coding that has been
written to the rule, or return to the primary EasyRule menu to continue with rule
modifications.

The remaining options determine your ability to reopen the rule with EasyRule
after saving it. Select Y on the first question if you want to be able to use
EasyRule to Browse or Edit the generated REXX code. IF YOU REPLY "N", YOU
CANNOT MODIFY THE GENERATED CODE VIA EASYRULE. THE ONLY
WAY WILL BE TO EDIT THE MEMBER VIA ISPF. Select Y on one or more of
the last three questions to reserve space for user code in the generated rule. You
can enter/modify user code via ISPF and still reopen the rule via EasyRule.

Lesson 5 - Using EasyRule

PV001 5 - 14 Computer Associates

5 - 14

View Results
)MSG IEF450I
/**/
/* Rule Name: IEF450I */
/* Rule Type: Message */
/* Rule Function: Message rule built by the */
/* Automation Analyzer */
/* THIS RULE SUPPRESSES ALL IEF450I MESSAGES. */
/* Author: TNG2908 */
/* History: 99/11/17 - Original development */
/* MY FIRST AUTOMATION RULE!! */
/**/
)PROC
/*--*/
/* The following code is executed each time the rule is fired. */
/*--*/
return

View Results
Above is your generated OPS/REXX code.

Action: When you are finished viewing the code, press PF3. The EasyRule Final
Options Menu appears. Enter a 4 (Alter) in the Option field and then press Enter
to continue writing the rule.

Lesson 5 - Using EasyRule

PV001 5 - 15 Computer Associates

5 - 15

User Code Entry Points
)MSG IEF450I
/**/
/* Rule Name: IEF450I */
/* Rule Type: Message */
/* Rule Function: Message rule built by the */
/* Automation Analyzer */
/* THIS RULE SUPPRESSES ALL IEF450I MESSAGES. */
/* Author: TNG2908 */
/* History: 99/11/17 - Original development */
/* MY FIRST AUTOMATION RULE!! */
/**/
)PROC
/*--*/
/* The following code is executed each time the rule is fired. */
/*--*/
/* B-E-G-I-N U-S-E-R C-O-D-E Begin Proc */
/* E-N-D U-S-E-R C-O-D-E Begin Proc */
/* B-E-G-I-N U-S-E-R C-O-D-E Condition */
/* E-N-D U-S-E-R C-O-D-E Condition */
/* B-E-G-I-N U-S-E-R C-O-D-E Post Action */
/* E-N-D U-S-E-R C-O-D-E Post Action */
return

User Entry Code Points
The above example shows the User Code Entry Points that are inserted if you
answer Y to the question
DO YOU INTEND TO INSERT USER PROCESSING CODE IN THIS RULE? ==> N (Y/N)

that appears on the EasyRule final options menu.

Normally, if user code is entered added to a rule created with EasyRule, it can no
longer be opened and edited with EasyRule. When the User Code Entry Points
are present, user code can be inserted between each pair of entry points using
the ISPF editor and the rule can continue to be opened with EasyRule. If
modifications are made outside of these entry points, EasyRule can no longer be
used to open the rule.

Lesson 5 - Using EasyRule

PV001 5 - 16 Computer Associates

5 - 16

Specify Conditions
EasyRule --
OPTION ===> D

M E S S A G E R U L E -- C O N D I T I O N S M E N U

These panels allow you to specify additional criteria (beyond the Message
ID) which must be satisfied for this Rule to fire.

1 Message text A Other address spaces
3 Current console routing (ROUTCDEs) D Day/Time/Shift/Calendar
4 Highlighting/Color (DESC codes) G Global variables
5 Message Environmental variables L Local or other Global variables
6 Multi-line WTO support O OPSINFO variables

V Device or VOLSER status

C Specify how multiple conditions are to be evaluated (AND/OR)

Specify Conditions
Now, we will use the Conditions Menu to choose conditions for EasyRule to use
as selection criteria for the rule. These conditions are in addition to the primary
selection criterion you specified on the Primary Event Specification panel. A
unique Conditions Menu exists for each rule type. A sample panel, showing the
Conditions Menu for message rules, appears above.

Although the total number of options on the menus differs among rule types, the
format of the menus is the same. The column on the left of each Conditions Menu
lists conditions that are unique to the type of rule you are creating. The column on
the right lists conditions that are common to all rule types.

Action: Type a D (Day/Time/Shift/Calendar) in the Option field and then press
Enter. The Day/Time/Shift/Calendar Conditions panel displays.

Tip: You can repeat this procedure to choose several or all options, as long as
you do so one at a time.

Lesson 5 - Using EasyRule

PV001 5 - 17 Computer Associates

5 - 17

Change Day
EasyRule --
COMMAND ===>

D A Y / T I M E / S H I F T / C A L E N D A R C O N D I T I O N S

This panel allows you to specify particular times and dates on which the
Rule you are creating should or should not take action. Times must be
specified in "military" (00:00 to 23:59) format. DO NOT TYPE COLONS (:).

<--------- TIMES ---------- > <--- DAYS --->
START END I = INCLUDE

I/E HH MM HH MM I/E E = EXCLUDE
_ BETWEEN __ __ AND __ __ _ MONDAY

OR _ TUESDAY
_ BETWEEN __ __ AND __ __ _ WEDNESDAY

OR _ THURSDAY
_ BETWEEN __ __ AND __ __ _ FRIDAY

E SATURDAY
I/E E SUNDAY
_ HOLIDAY
_ SPECIAL DAY ===> ________
_ SHIFTS ===> ________ ________ ________ ________

Change Day
Next, we will use the Day/Time/Shift/Calendar Conditions panel, shown above, to
specify conditions relating to particular days of the week.

Action: Type an E next to the SATURDAY and SUNDAY fields to exclude these
days from the rule’s action and then press PF3 to return to the Conditions Menu.

Lesson 5 - Using EasyRule

PV001 5 - 18 Computer Associates

5 - 18

Verify Message Wording
EasyRule --
COMMAND ===>

M E S S A G E R U L E -- M E S S A G E T E X T C O N D I T I O N S

OPERATOR <--------- VALUE ----------->
WORD 2_ = BOBSJOB_______________________
WORD 6_ = ABEND=S222____________________
WORD __ = ______________________________
WORD __ = ______________________________
WORD __ = ______________________________
WORD __ = ______________________________
WORD __ = ______________________________
WORD __ = ______________________________
WORD __ = ______________________________
WORD __ = ______________________________
WORD __ = ______________________________
WORD __ = ______________________________
WORD __ = ______________________________
WORD __ = ______________________________
WORD __ = ______________________________
WORD __ = ______________________________

Verify Message Wording
Now, we will enter option 1 on the Conditions Menu to change the text of the
message. The Message Text Conditions panel displays, an example of which is
shown above.

Action: Complete the panel as shown above and then press PF3 until the
EasyRule Final Options Menu appears.

Lesson 5 - Using EasyRule

PV001 5 - 19 Computer Associates

5 - 19

Check Progress
/* MY FIRST AUTOMATION RULE!! */
/**/
)PROC
/*--*/
/* The following code is executed each time the rule is fired. */
/*--*/

/*---*/
/* Message text conditions */
/*---*/

if (WORD(MSG.TEXT,2) = "BOBSJOB"),
&(WORD(MSG.TEXT,6) = "ABEND=S222"),
/*---*/
/* Check the Day/Time/Shift/Calendar conditions */
/*---*/
&(((DATE("W") ¬= "Saturday"),

&(DATE("W") ¬= "Sunday"))),
then do

return
end

******************************** Bottom of Data **************************

Check Progress
Once again, we will use the EasyRule Final Options Menu (option 3 - Browse) to
view the progress of our rule.

Action: When you are finished viewing the code, press PF3. The EasyRule Final
Options Menu appears. Enter a 4 (Alter) in the Option field and then press Enter
to continue writing the rule.

Lesson 5 - Using EasyRule

PV001 5 - 20 Computer Associates

5 - 20

Specify an Action
EasyRule --
OPTION ===> 1

M E S S A G E R U L E -- T A K E A C T I O N

The actions you specify via these panels will be taken for all messages that
have the Message ID you specified and pass any additional tests you supplied
via the "Additional Criteria" panels.

1 Suppress G Update Global variables
2 Delete (Suppress w/ no SYSLOG) L Update Local or Global variables
3 Re-route to other consoles M Issue OS/390 messages
4 Re-word the Message O Issue Operator commands
5 Hilite/Color/Change DESC codes P Page support people
6 Reply (WTORs only) Q Perform SQL update or insert
7 Send to another system (MSF) S Send messages to TSO users
8 Throttle Message display rate U Issue UNIX commands
9 Update Environmental variables X Run REXX/CLIST program in Server

Specify an Action
Next, we will use the Take Action panel to specify an action for the rule to take
when it is enabled. To access this panel, type a 4 in the Option field on the
Message Rule Main Menu and then press Enter.

A unique Take Action panel exists for each rule type. The above sample display
shows the Take Action panel for message rules:

Although the total number of options on the menus differs among rule types, the
format of the menus is the same. The column on the left of each Take Action
Menu lists actions that are unique to the type of rule you are creating. The column
on the right lists actions that are common to all rule types.

Action: Type a 1 (Suppress) in the Option field and then press Enter. The
Message Suppression panel displays.

Tip: You can repeat this procedure to choose several or all options, as long as
you do so one at a time.

Lesson 5 - Using EasyRule

PV001 5 - 21 Computer Associates

5 - 21

Specify an Action

EasyRule ---
COMMAND ===>

M E S S A G E S U P P R E S S I O N

SUPPRESS? ===> Y (Y/N)

SUPPRESS is a YES/NO question which is a way to conclude your
OPS/REXX Rule and prevent the message from appearing on the console.

Note that the message still appears on the SYSLOG.

(continued)

Specify an Action
We will use the Message Suppression panel, shown above, to prevent the
message from appearing on the console.

Action: Type a Y in the SUPPRESS field and then press PF3 to return to the
Take Action panel.

Lesson 5 - Using EasyRule

PV001 5 - 22 Computer Associates

5 - 22

Specify Another Action
EasyRule --
OPTION ===> L

M E S S A G E R U L E -- T A K E A C T I O N

The actions you specify via these panels will be taken for all messages that
have the Message ID you specified and pass any additional tests you supplied
via the "Additional Criteria" panels.

1 Suppress G Update Global variables
2 Delete (Suppress w/ no SYSLOG) L Update Local or Global variables
3 Re-route to other consoles M Issue OS/390 messages
4 Re-word the Message O Issue Operator commands
5 Hilite/Color/Change DESC codes P Page support people
6 Reply (WTORs only) Q Perform SQL update or insert
7 Send to another system (MSF) S Send messages to TSO users
8 Throttle Message display rate U Issue UNIX commands
9 Update Environmental variables X Run REXX/CLIST program in Server

Specify Another Action
Let’s specify another action for the rule using the Take Action panel.

Action: Enter an L in the Option field and then press Enter. The Update Local or
Global Variables panel appears.

Lesson 5 - Using EasyRule

PV001 5 - 23 Computer Associates

5 - 23

Track Occurrences
EasyRule --
COMMAND ===>

U P D A T E L O C A L OR G L O B A L V A R I A B L E S

<-LOCAL/GLOBAL VARIABLE NAME > <------ NEW VALUE ---------->
COUNT_________________________ ===> (COUNT + 1)___________________
______________________________ ===> ______________________________
______________________________ ===> ______________________________
______________________________ ===> ______________________________
______________________________ ===> ______________________________
______________________________ ===> ______________________________
______________________________ ===> ______________________________
______________________________ ===> ______________________________
______________________________ ===> ______________________________
______________________________ ===> ______________________________
______________________________ ===> ______________________________
______________________________ ===> ______________________________
______________________________ ===> ______________________________
______________________________ ===> ______________________________
______________________________ ===> ______________________________
______________________________ ===> ______________________________

Track Occurrences
Now, we will assign a value to a local variable that will keep track of the number
of times the rule executes.

Action: Complete the panel as shown above and then press PF3 until the
Message Rule Main Menu appears.

Lesson 5 - Using EasyRule

PV001 5 - 24 Computer Associates

5 - 24

Initialize
EasyRule --
COMMAND ===>

I N I T I A L I Z A T I O N M E N U

1 INITIALIZE VARS - Initialize local or global variables
2 LIMIT SYSTEMS - Limit the systems on which this rule will enable

Lesson 5 - Using EasyRule

PV001 5 - 25 Computer Associates

5 - 25

Initialize Variables
EasyRule --
COMMAND ===>

I N I T I A L I Z E R U L E V A R I A B L E S

--LOCAL/GLOBAL VARIABLE NAME-- <---- INITIAL VALUE -------->
COUNT_________________________ ===> 0_____________________________
______________________________ ===> ______________________________
______________________________ ===> ______________________________
______________________________ ===> ______________________________
______________________________ ===> ______________________________
______________________________ ===> ______________________________

-GLOBAL VARIABLE NAME-- <---- INITIAL VALUE -------->
GLOBAL. _______________________ ===> ______________________________
GLOBAL. _______________________ ===> ______________________________
GLOBAL. _______________________ ===> ______________________________
GLOBAL. _______________________ ===> ______________________________
GLOBAL. _______________________ ===> ______________________________
GLOBAL. _______________________ ===> ______________________________

Initialize Variables
Next, we will use the Initialize Rule Variables panel, shown below, to initialize the
value of the variable. You use this panel to set variables to specific values before
the rule executes for the first time. To access this panel, type a 5 in the Option
field on the Message Rule Main Menu and then press Enter.

Action: Complete the panel as shown above and then press PF3. The Message
Rule Main Menu displays.

Lesson 5 - Using EasyRule

PV001 5 - 26 Computer Associates

5 - 26

Limit Systems
EasyRule --
COMMAND ===>

L I M I T S Y S T E M S O N W H I C H R U L E W I L L E N A B L E

Enable this rule (O)nly on listed systems or (N)ever on listed systems?
===> O (O/N)

Use SYSNAME (SYS) or SMFID (SMF) as system name? ===> SYS (SYS/SMF)

Issue warning message if rule is not enabled? ===> Y (Y/N)

System names ===> ___
OR

OPS/REXX variable prefix in which system names can be found:
===> ______________________________ Recommended: GLOBAL5.SYS
(The ruleset and rulename will be appended to the prefix to construct a
complete variable name, and EasyRule automatically appends a dot between the
prefix and the ruleset. For example, if you enter GLOBAL5.SYS, and the rule
is COM.VTAM01, the complete variable will be GLOBAL5.SYS.COM.VTAM01.)

Lesson 5 - Using EasyRule

PV001 5 - 27 Computer Associates

5 - 27

Is Rule Complete?
********************************* Top of Data **************************
)MSG IEF450I
/**/
/* Rule Name: IEF450I */
/* Rule Type: Message */
/* Rule Function: Message rule built by the */
/* Automation Analyzer */
/* THIS RULE SUPPRESSES ALL IEF450I MESSAGES. */
/* Author: TNG2908 */
/* History: 99/11/17 - Original development */
/* MY FIRST AUTOMATION RULE!! */
/**/
)INIT
/*--*/
/* The following code is only executed when the rule is enabled. */
/* Initialize Static and Global variables. */
/*--*/
COUNT = "0"

)PROC
/*--*/

Is Rule Complete?
Once again, we will use the EasyRule Final Options Menu to view our rule. To do
so, type a 3 (Browse) in the Option field and then press Enter.

Lesson 5 - Using EasyRule

PV001 5 - 28 Computer Associates

5 - 28

Is Rule Complete?
/* The following code is executed each time the rule is fired. */
/*--*/

/*---*/
/* Message text conditions */
/*---*/

if (WORD(MSG.TEXT,2) = "BOBSJOB"),
&(WORD(MSG.TEXT,6) = "ABEND=S222"),
/*---*/
/* Check the Day/Time/Shift/Calendar conditions */
/*---*/
&(((DATE("W") ¬= "Saturday"),

&(DATE("W") ¬= "Sunday"))),
then do

/*---*/
/* Set or update local or global REXX variables. */
/*---*/
COUNT = "(COUNT + 1)"
return "SUPPRESS" /* from the console */

end
******************************** Bottom of Data ************************

(continued)

Is Rule Complete?
Action: When you are finished viewing the code, press PF3 until the EasyRule
Final Options Menu appears.

Lesson 5 - Using EasyRule

PV001 5 - 29 Computer Associates

5 - 29

Save
EasyRule --------------- XE09 --- O P S V I E W --------------- Subsystem OPSS
OPTION ===> 1

EEEEE AAAA SSSS YY YY RRRR UU UU LL EEEEE
EE AA AA SS YYYY RR R UU UU LL EE
EEEEE AAAAAA SSSSS YY RRRR UU UU LL EEEE
EE AA AA SS YY RR R UU UU LL EE
EEEEE AA AA SSSS YY RR R UUUU LLLLL EEEEE

1 SAVE - SAVE the Rule that was built and EXIT
2 CANCEL - EXIT and DO NOT SAVE the Rule that was built
3 BROWSE - Browse the generated OPS/REXX code
4 ALTER - Return to the panels to modify the Rule

DO YOU WANT TO BE ABLE TO MODIFY THIS RULE WITH EASYRULE? ==> Y (Y/N)
DO YOU INTEND TO INSERT USER PROCESSING CODE IN THIS RULE? ==> N (Y/N)
DO YOU INTEND TO INSERT USER INITIALIZATION CODE IN THIS RULE? ==> N (Y/N)
DO YOU INTEND TO INSERT USER TERMINATION CODE IN THIS RULE? ==> N (Y/N)

Save
If you are pleased with your rule, the last step is to save it. To do so, type a 1
(Save) in the Option field on the EasyRule Final Options Menu and then press
Enter.

Lesson 5 - Using EasyRule

PV001 5 - 30 Computer Associates

More About the EasyRule Final Options Menu
The following options are available on the EasyRule Final Options Menu:

1. Save
EasyRule saves the rule into the member you specified on the
EasyRule Primary Panel. (If you prefer, you can press PF3 to
achieve the same result.)

2. Cancel
EasyRule ignores all of your panel entries. No rule is created or
updated. (If you prefer, you can enter the CANCEL command into
the panel’s Option field to achieve the same result.)

3. Browse
EasyRule takes you to the standard ISPF browse panel, where you
can review the OPS/REXX code that it built for your rule. You
cannot make changes to the OPS/REXX code from the ISPF
browse panel. If you want to make changes, press PF3 to return to
the EasyRule Final Options Menu and then choose option 4 (Alter).

4. Alter
EasyRule returns you to the Primary Event Specification panel and
moves you through all of the subsequent panels. The values that
you entered appear on the panels. You can make changes,
additions, or deletions to the rule’s specifications as you view your
entries. When you finish, press PF3 to return to the EasyRule Final
Options Menu.

Regardless of which option you choose, an ISPF message appears in
the upper right corner of the panel to indicate whether the rule has been
saved.

Making Modifications With EasyRule
The EasyRule Final Options Menu prompts you to decide whether you
want EasyRule to be the mechanism with which you make further
changes to the rule.
The default is Y. If you enter N, you will not be able to use EasyRule to
modify the code in the future.

Lesson 5 - Using EasyRule

PV001 5 - 31 Computer Associates

5 - 31

EasyRule Help

EasyRule Help
EasyRule help is designed to provide detailed information about each EasyRule
panel at the touch of a key. Through EasyRule help, you can learn:

What a panel does.
What the valid input values are for a panel.
What OPS/REXX code EasyRule will generate as a result of typical
panel entries.
What an unfamiliar term means.

Accessing EasyRule Help
Press PF1/13.
Enter the HELP command in the Command or Option field.

The Four Basic Types of EasyRule Help Panels
Menu help panels.
Standard help panels.
Help example panels.
Help glossary panels.

Lesson 5 - Using EasyRule

PV001 5 - 32 Computer Associates

5 - 32

EasyRule Menu Help

EasyRule --------------- MESSAGE RULE -- CONDITIONS MENU ------------- Tutorial
OPTION ===>

MENU INSTRUCTIONS: Type the menu selection number in the OPTION ==> field.

These options look for:

1 - MESSAGE TEXT - Generic or specific message words
2 - CURRENT CONSOLE ROUTING - Route Code(s)
3 - HIGHLIGHTING/COLOR - Descriptor Code(s)
4 - ENVIRONMENTAL VARIABLES - Generically or exactly specified values
5 - MULTI-LINE WTO - Test for multi-line or single line WTO

These options make use of:

A - OTHER ADDRESS SPACES - Determine whether other address spaces are active
D - DAY/TIME/SHIFT/CALENDAR - Include or exclude by time/day conditions
G - GLOBAL VARIABLES - Exact or generic global variable values
L - LOCAL/GLOBAL VARIABLES - Exact or generic local or global variable values
O - OPSINFO VARIABLES - Values about the product and/or its environment
V - OPSDEV STATUS - ONLINE/OFFLINE status of a device or VOLSER

EasyRule Menu Help
If you access help from an EasyRule menu panel, you access the help panel for
that menu. For example, if you press PF1/13 from the Conditions Menu for
message rules, the above menu help panel appears.

How Menu Help Panels Present Information:
Menu help panels provide a little more detail about each of the available
menu options.

Actions You May Take on a Menu Help Panel:
Enter a selection number or letter in Option field.

A more detailed help panel for the selected option appears.
PF3

Your EasyRule help session is terminated.

Lesson 5 - Using EasyRule

PV001 5 - 33 Computer Associates

5 - 33

EasyRule Standard Help

EasyRule ----- MESSAGE RULE - HILITE/DESCRIPTOR CODE CONDITIONS ------ Tutorial
OPTION ===>

PURPOSE: To select Descriptor Codes that will be used to determine
whether or not this Rule will continue to fire.

HOW TO: Type an S to select each Descriptor Code you wish used as
part of the condition for firing.

Type in up to five additional Descriptor Codes that you
would like used as part of this condition.

OR, type a variable name that contains the Descriptor Codes.

POSSIBLE See Glossary for an explanation of Descriptor Codes.
INPUTS:

You can select any number of Descriptor Codes. Additional
Codes entered can only be in the range from 12 to 16.

RESULTS: Codes selected on this panel will be placed in an IF statement
in the)PROC section of the Rule's generated OPS/REXX code.

EasyRule Standard Help
Another type of help panel you can access from EasyRule is a standard help
panel. For example, if you press PF1/13 from the Message Rule - Descriptor
Code Conditions panel, the above standard help panel appears.

How Standard Help Panels Present Information
Purpose

Explains the purpose of the panel .
How To

Provides basic instructions for the entries you need to make on the
panel. Tells you whether an entry is required or optional.

Possible Inputs
Explains what types of entries are valid for a particular field. On
some panels, provides further details for particular fields.

Results
Describes the OPS/REXX code that EasyRule will generate as a
result of your entries.

Lesson 5 - Using EasyRule

PV001 5 - 34 Computer Associates

You may take these actions on most standard help panels:
Enter E in Option field.

A help example panel appears. It will present you with both an
example of a correctly filled-in panel, and the OPS/REXX code that
EasyRule would generate from those entries.

Enter G in Option field.
A help glossary panel appears. In the EasyRule glossary, you can
look up the definitions of unfamiliar terms.

Press Enter.
You are presented with a second standard help panel. (This applies
to two-part standard help panels only.)

Press PF3.
Your EasyRule help session is terminated.

Lesson 5 - Using EasyRule

PV001 5 - 35 Computer Associates

5 - 35

EasyRule Example Help

EasyRule ----- MESSAGE RULE - DESCRIPTOR CODE CONDITIONS EXAMPLE ---- Tutorial
COMMAND ===>

M E S S A G E R U L E - D E S C R I P T O R C O D E C O N D I T I O N S

Use S to select one or more of the following Descriptor Codes:
S SYSFAIL (1) (Hilite, non-scrollable)

EVENACTN (2) (Hilite only)
....

S DYNSTAT (10)
CRITEVET (11)

Other Descriptor Code(s) ===>

This example will generate the highlighted OPS/REXX statements:

)PROC
EASYRULEDESC = OPSBITS("SYSFAIL")
EASYRULEDESC = BITOR(EASYRULEDESC,OPSBITS("DYNSTAT"))
IF (BITAND(MSG.DESC,EASYRULEDESC) = BITOR(EASYRULEDESC,"0000"X))

THEN DO ...

EasyRule Example Help
On most of EasyRule’s standard help panels, you can enter E in the Option field
to see an example of a correctly filled-in panel, along with the OPS/REXX code
that EasyRule would generate from those entries. For example, if you enter E in
the Option field of the panel shown below, the above help example panel
appears.

Lesson 5 - Using EasyRule

PV001 5 - 36 Computer Associates

How Help Example Panels Present Information
The top half of the panel shows the EasyRule panel that you wanted an
example of. The panel is filled in with a typical set of entries, which are
highlighted. (Sometimes, due to space limitations, not all panel lines
appear.)
The bottom half of the panel shows the OPS/REXX code that EasyRule
would generate for the entries in the top half. If necessary, the bottom
half also describes the entries. (Sometimes, due to space limitations,
not all lines of generated code appear.)

Actions You May Take on a Help Example Panel
Press Enter.

You are returned to the previous help panel.
Press PF3.

Your EasyRule help session is terminated.

Lesson 5 - Using EasyRule

PV001 5 - 37 Computer Associates

5 - 37

EasyRule Glossary
EasyRule ----------------------- GLOSSARY --------------------------- Tutorial
COMMAND ===>

AOF: Automated Operations Facility - the part of the product
that may be programmed to automatically respond to
"events" that occur within an OS/390 system.

ASYNCHRONOUS: An operation that occurs without a regular or predictable
time relationship to a specified event.

CLIST: Command List. A sequential list of commands, control
statements, or both, that is assigned a name; when the
name is invoked the commands in the list are executed.

DESCRIPTOR CODES: Two-digit values that indicate the means of message
presentation and message deletion on display devices.

1 System Failure 8 Out-of-Line Message
2 Immediate Action Required 9 Operator Request
3 Eventual Action Required 10 Dynamic Status Display
4 System Status 11 Critical eventual

EasyRule Glossary
On most of EasyRule’s standard help panels, you can enter G in the Option field
to access EasyRule’s glossary. The fabove sample panel shows a help glossary.

Help glossary panels are arranged in alphabetical order. Typically, when you
access the glossary, you will not be positioned at its beginning.

Actions You May Take on a Help Glossary Panel:
Enter B in Command field.

You are moved backward in the glossary.
Enter F in Command field.

You are moved forward in the glossary.
Press Enter.

You are returned to the previous help panel.
Press PF3.

Your EasyRule help session is terminated.

Lesson 5 - Using EasyRule

PV001 5 - 38 Computer Associates

5 - 38

Lesson Summary

You should now be able to:
Describe and access EasyRule
Write rules using EasyRule

Lesson 5 - Using EasyRule

PV001 5 - 39 Computer Associates

5 - 39

Lesson 5 Activity

Lesson 5 Activity – Solving a Problem With EasyRule
Scenario

You need to be aware of NOT CATALOGED 2 conditions because they
are indicative of production problems. These conditions are identified in
IEF287I messages.
IEF285I messages are related normal messages that do not require
action.
You want to increase the visibility of the NOT CATALOGED 2
conditions. The presence of IEF285I messages creates visual noise,
making it difficult for you to see and respond to the important IEF287I
messages.

Task
Write two rules.

The first rule, called MNSTATUS, should not only suppress IEF285I
messages from displaying on the console, but also keep them from
appearing in the SYSLOG.

Lesson 5 - Using EasyRule

PV001 5 - 40 Computer Associates

Lesson 5 Activity (continued)
The second rule, called NOTCTLG, should highlight IEF287I
messages and post messages as described to the job log.

Steps to take:
1. Access the EasyRule Primary panel.
2. Specify a data set and member for the first rule:

CLCS.<userid>.OPSRULES(MNSTATUS)
3. Select the type of rule you want to create.
4. Select MESSAGE ID from the Message Rule Main Menu.
5. Supply the primary selection criteria. (Hint: Specify a D in the Just

Delete field.)
6. Select DOCUMENTATION from the Message Rule Main Menu.
7. Document the MNSTATUS rule.
8. Access the EasyRule Final Option Menu.
9. Review the OPS/REXX code that EasyRule built.
10. Save the MNSTATUS rule.
11. Specify a data set and member for the second rule:

CLCS.<userid>.OPSRULES(NOTCTLG)
12. Select the type of rule you want to create.
13. Select MESSAGE ID from the Message Rule Main Menu.
14. Supply the primary selection criteria.
15. Select DOCUMENTATION from the Message Rule Main Menu.
16. Document the rule you are creating.
17. Select 5 from the Take Action menu.
18. Specify the descriptor code as SYSFAIL.
19. Select ACTIONS from the Message Rule Main Menu.
20. Select O from the Take Action menu.
21. Write messages to the job log.

Hint 1: The command to write messages to the Job Log is:
$d m jobnumber, msgtext

Hint 2: You must enclose variables in {} if they are specified in an
Option O command string.

22. Access the EasyRule Final Options Menu.
23. Review the OPS/REXX code that EasyRule built.
24. Save the NOTCTLG rule.

Lesson 6 - Testing Rules

PV001 6 - 1 Computer Associates

ca.com

Testing Rules

Lesson 6

Lesson 6 - Testing Rules

PV001 6 - 2 Computer Associates

6 - 2

Lesson Objectives

After this lesson, you will be able to:
Test rules using the AOF test facility

Lesson 6 - Testing Rules

PV001 6 - 3 Computer Associates

6 - 3

AOF Test Facility

z/OS

Unicenter CA-OPS/MVS

Automated Operations Facility
(AOF)

Automation
Analyzer EasyRule OPS/REXX OPSLOG

OPSVIEW

AOF Test Facility
After you create a rule, use the AOF test facility to test it before you put it into
production.

The test facility lets you develop and test automation rules offline, before putting
them into production. The primary components of the test facility are OPSVIEW
option 2.1 (for editing and testing AOF rules) and 2.2 (for maintaining the AOF
test compiled rules library).

Lesson 6 - Testing Rules

PV001 6 - 4 Computer Associates

6 - 4

OPSVIEW Editors
CA-OPS/MVS II Editors---------- XE09 -- O P S V I E W -------- Subsystem OPSS
OPTION ===> 1

1 AOF Edit - Edit and Test AOF Rules
2 AOF Compile - Maintain the AOF Test Compiled Rules Library
3 EasyRule - Create or Modify Rules using panels

4 REXX Edit - Edit, Compile and Execute REXX programs
5 REXX Compile - Manage REXX Compiled Program Library

6 Table Edit - Relational Table Editor for RDF
A Appl Parms - Application Parameter Editor

OPSVIEW Editors
To access the OPSVIEW Editors option, type a 2 on the OPSVIEW Primary
Options Menu and then press Enter. You see a display similar to the one shown
above. This panel is called the Editors menu.

Note: You can also access the Editor menu via the ISPF jump function. To do so,
enter =2.1 into any valid field within OPSVIEW.

Action: To test rules, type a 1 (AOF Edit) in the Option field and then press Enter.
The Specification Display panel appears.

Lesson 6 - Testing Rules

PV001 6 - 5 Computer Associates

6 - 5

AOF Edit
AOF EDIT - Entry panel --- XE09 --- O P S V I E W ------------ Subsystem OPSS
COMMAND ===>

RULE LIBRARY:
PROJECT ===> TSOUSER
GROUP ===> OPS (* for all RULESETs)
TYPE ===> RULES
MEMBER ===> (Blank for MEMBER selection list)

OTHER PARTITIONED DATA SET:
DATA SET NAME ===>

------------------------- AOF TEST DATA -------------------------------------
(Blank all fields below in order to test with temporary data.)

TEST DATA SET NAME:
PROJECT ===>
GROUP ===>
TYPE ===>
MEMBER ===>

OTHER PARTITIONED DATA SET:

AOF Edit
When you access OPSVIEW option 2.1 (AOF Edit), you see a display similar to
the one shown above. This panel is called the Specification Display panel.

Action: Complete the panel as shown above and then press Enter. (In place of
TSOUSER, type your user ID.) The Rule List panel appears.

There are two ways that you can display a list of rules:
On the Specification Display panel, use the Project, Group, and Type
fields to enter the name of an existing rule set, but leave the Member
field blank.
On the Rule Set List panel, issue the S line command.

Lesson 6 - Testing Rules

PV001 6 - 6 Computer Associates

6 - 6

Enable Rule
AOF TEST - Rule List ------ TSOUSER.OPS.RULES ---------------- Row 1 to 1 of 1
COMMAND ===> SCROLL ===> PAGE

Line Commands: R EasyRule S ISPF Edit T Test C Compile
E Enable D Disable A Set Auto-Enable Z Reset Auto-Enable X Delcomp

Test Start Date : 2003/06/17 Test Start Time : 14:44:00
Test Current Date : 2003/06/17 Test Current Time: 14:44:00

RuleName Status AE TYP VV.MM Created Changed Size Init Mod ID
E IEF450I DISABLED N *** 01.00 03/06/17 03/06/17 09:55 62 62 0 TSOUSER
END

Enable Rule
The Rule List panel shows a listing of all the rules within a rule set.

You must enable a rule before you can test it. You can enable or disable rule
sets, and rules within each rule set, independently of each other.

Action: To enable a rule, type an E (Enable) to the left of the desired rule name
and then press Enter.

Two types of fields appear on the Rule List panel. The test date and test time
fields that appear toward the top of the panel are modifiable. The remaining fields
provide information about the individual rules in the rule set and cannot be
modified.

Lesson 6 - Testing Rules

PV001 6 - 7 Computer Associates

Modifiable Fields on the Rule List Panel
Test Start Date - The date you want the test to begin.
Test Start Time - The time you want the test to begin.
Test Current Date - The current date. May differ from Test Start Date.
Test Current Time - The current time. May differ from Test Start Time.

Non-modifiable Fields on the Rule List Panel
Rulename -Name of rule. Member name belonging to PDS, or rule set,
that is named at top of panel. In sample panel, rules listed on the panel
belong to the rule set named TSOUSER.OPS.RULES.)
Status -Indicates whether the rule is enabled or disabled. You must use
the E line command to enable a rule if you want to test it.
AE -The rule set’s auto-enable status.
TYP -Type of rule. If Status is DISABLED, value of TYP field is ***. If
Status is ENABLED, value of TYP field can be any of these values:

ARM – Automatic Restart Management rule
API – Application Program Interface
CMD – Command rule
DOM – Delete-operator-message rule
EOJ – End-of-job rule
EOM – End-of-memory rule
EOS – End-of-step rule
GLV – Global variable rule
MSG – Message rule
OMG – OMEGAMON rule
REQ – Request rule
SCR – Screen rule
SEC – Security rule
TLM – Time limit excession rule
TOD – Time-of-day rule
USS – UNIX System Services rule

VV.MM -The version number and modification number of the rule.
Created - The rule’s creation date.
Changed -The date and time of the last modification made to the rule.
Size - The current number of lines in the rule.
Init - The number of lines in this rule when it was first created.
Mod - The number of lines in this rule that have been modified.
ID - The TSO user ID of the last user who modified this rule.

Lesson 6 - Testing Rules

PV001 6 - 8 Computer Associates

Primary Commands for the Rule List Panel
Data

Invokes ISPF option 3.1 for the AOF test data set. This command is
valid only if you entered a value into the Test Data Set Name field
on the Specification Display panel.

Globals
Causes the Display Global Variables panel to appear. You can use
the Display Global Variables panel to:

Display a global variable’s subnodes.
Drop a node.
Remove a node and its subnodes.
Create and modify global variables.

Locate rule
Scrolls the panel so that the line referring to rule is the top line on
the panel.

OpsBrw
Invokes the OPSLOG Browse Test Data panel. This panel is a full-
screen display of current rule test data.

Rules
Invokes ISPF option 3.1 for the AOF test rule data set.

Select rulename
Selects rulename so that you can edit it.

SORT columnname
Sorts the specified column in default order. For example, you can
issue this command to sort the rules according to the date and time
that they were last modified:

SORT CHANGED
The default order varies by column.

SORTA columnname
Sorts the specified column in ascending order.

SORTD columnname
Sorts the specified column in descending order.

Lesson 6 - Testing Rules

PV001 6 - 9 Computer Associates

Line Commands for the Rule List Panel
A - Sets the rule’s auto-enable flag to Y. If you use the Rule Set List
panel to enable the rule set to which this rule belongs, this rule is
enabled. Contrast this command with the Z line command.
B - Compiles the rule into the compiled rule data set.
D - Disables a rule that was previously enabled.
E - Enables a rule so that you can test it. If a rule contains syntax
errors, the E command fails.
R - Invokes EasyRule processing for the rule. You can use the R
command for a rule only if you used EasyRule to create the rule and
you have not used the S line command to edit the rule.
S - Selects the rule for ISPF editing. The panel you see when you issue
the S command is similar to an ISPF edit session of the rule. You may
notice slight modifications to the panel which appear to remind you that
you are within the AOF edit option. You can use the ISPF HELP
command when you are within the editing session.
T - Displays the AOF Test panel.
X - Deletes the rule from the compiled rule data set.
Z - Sets the rule’s auto-enable flag to N. Even if you use the Rule Set
List panel to enable the rule set to which this rule belongs, this rule will
not be enabled. Contrast this command with the A line command.

Lesson 6 - Testing Rules

PV001 6 - 10 Computer Associates

6 - 10

Select for Testing
AOF TEST - Rule List ------ TSOUSER.OPS.RULES --------------- AOF RULE ENABLED
COMMAND ===> SCROLL ===> PAGE

Line Commands: R EasyRule S ISPF Edit T Test C Compile
E Enable D Disable A Set Auto-Enable Z Reset Auto-Enable X Delcomp

Test Start Date : 2003/06/17 Test Start Time : 14:44:00
Test Current Date : 2003/06/17 Test Current Time: 14:44:00

RuleName Status AE TYP VV.MM Created Changed Size Init Mod ID
T IEF450I ENABLED N MSG 01.00 03/06/17 03/06/17 09:55 62 62 0 TSOUSER
END

Select for Testing
After you enable a rule, you will notice that two fields on the Rule List panel (as
shown in the example screen above) change. This example shows how the panel
looks after the changes. Notice that for the rule named IEF450I, the value in the
Status field has changed to ENABLED and the value in the Typ field has changed
to MSG. In addition, the message “AOF RULE ENABLED” appears in the upper-
right corner of the panel.

Once a rule is enabled, you can select it for testing.

Action: To select a rule for testing, type a T (Test) to the left of the desired rule
name and then press Enter.

Lesson 6 - Testing Rules

PV001 6 - 11 Computer Associates

6 - 11

Specify Testing Criteria
AOF Test MSG ------------ XE09 --- OPSVIEW --- 14:44:50 17JUN2003 COLS 001 070
COMMAND ===> SCROLL ===> PAGE

REXX Trace ==> N Live Commands ==> NO Access Auto Test Data: (Y/N)

Msg Id: Msg Disp: Hardcopy Log:
Jobname ==> TEST IMS Id ==>
Job Id ==> Exit Type ==> MVS
MSF Sys ==> Console Id ==> 0
User ==> Console Nm ==>
Sys Id ==> MCS Flags ==>
Special Ch ==> Descriptor ==>
Route ==>
Term Name ==> Report Id ==>
Message :=> IEF450I SAMPLE MESSAGE__

__
Time ----+----1----+----2----+----3----+----4----+----5----+----6----+----7
******** ********************* TOP OF MESSAGES *******************************
14:44:50 ENABLE OPS.IEF450I
14:44:50 ENABLE OPS.IEF450I
14:44:50 OPS3900O RULE OPS.IEF450I FOR MSG IEF450I NOW ENABLED

Specify Testing Criteria
When you select a rule for testing, the AOF takes you to a test panel for the type
of rule you selected. AOF Test panels prompt you for information about the rule
you want to test. The example panel shown above, the AOF Test MSG panel,
displays when a message rule is selected for testing.

The messages that appear in the message section at the bottom of the panel
shown above came from OPSLOG. They indicate that the rule named IEF450I
stored within the OPS rule set is enabled.

Action: Typically, you would enter values on an AOF Test MSG panel as follows:
1. Type the message ID and any text in the Message field. A message

rule test will not run unless this field has been completed. For example,
on the example panel above, IEF450I is entered in the Message field.

2. Type characters in the other fields as required to satisfy the conditions
specified in the rule. For example, on the example panel above, TEST
is entered in the Jobname field.

3. Press Enter to run a test message against the enabled rule.

Lesson 6 - Testing Rules

PV001 6 - 12 Computer Associates

When you finish typing data into an AOF Test panel and press Enter, the AOF
tries to match the information you specified on the panel to the AOF’s enabled
rules. If rules other than the one selected for testing have been enabled, they will
be included in the test. The AOF displays the test results in the bottom part of the
AOF Test panel. Once you see the results, you can press PF3 to terminate the
rule test session. If you want to continue testing, you can change some of the
field data and press Enter again.

Common AOF Test Panel Fields
Although there is a different AOF Test panel for each type of rule, the panels are
very similar. In fact, many of the same fields appear on all AOF Test panels.
Below are the common AOF Test panel fields; see your OPS/MVS documentation
for information about the fields on specific AOF Test panels.

Access Auto Test Data
If you have already extracted data from OPSLOG Browse to use for
your rule test and you enter a Y in this field, the AOF displays the
AOF Test Data Selection panel, where you can view the extracted
data.
If you have not extracted data and you enter a Y, the AOF displays
the OPSLOG Browse Test Data panel so that you can extract data.

Console Id/Console Number
An arbitrary number from 1 to 32767 that is associated with the
simulated console being used to enter the command or send the
message.

Console Name/Console Nm
The name of the simulated console being used to enter the
command or send the message.

Exit Type
The simulated exit type associated with the current command.
Types are IMS, JES3, OS/390, and OMG.

IMS ID
The four-character ID of the IMS system being simulated.

Jobname
For a message rule test, the simulated job name (TSO user ID or
task name) associated with the current message.
For a command rule test or a request rule test, the simulated job
name (TSO user ID or task name) associated with the current
command.

Lesson 6 - Testing Rules

PV001 6 - 13 Computer Associates

For an end-of-memory rule test, the name of the test. The name of
the test can be any valid job name or the wildcard character.

Live Commands
A value indicating how the AOF should treat host commands during
the rule test. If the value is YES, commands are issued on your
system. If the value is NO, commands are not issued, but they are
simulated for test purposes.

Report Id
For events originating in the generic data set interface or the
OMEGAMON interface, this value indicates the report ID associated
with the event.

REXX Trace
A value indicating if and how the AOF should trace a command that
REXX executes. Common values are:
N – Normal. The AOF traces only those host commands that fail.
R – Results. The AOF traces all clauses before execution, along
with the final results. This is useful for general debugging.
I – Intermediates. Similar to R, but the AOF also traces all REXX
clauses and intermediate results.
For details about tracing possibilities, refer to M.F. Cowlishaw’s The
REXX Language: A Practical Approach to Programming. You can
order a copy of Cowlishaw’s book from Prentice-Hall.

Sys ID/System ID
The identification string for the system.

User/User Field
Specifies eight bytes of data you want to pass between rules that
fire for the same event. Depending on what type of rule you are
testing, the event can be a command, message, global variable
event, OMEGAMON event message, request event, end-of-memory
event, or delete-operator-message event.

Lesson 6 - Testing Rules

PV001 6 - 14 Computer Associates

6 - 14

Test with Live Commands
AOF Test MSG ------------ XE09 --- OPSVIEW --- 14:58:17 17JUN2003 COLS 001 070
COMMAND ===> SCROLL ===> PAGE

REXX Trace ==> N Live Commands ==> YES Access Auto Test Data: (Y/N)

Msg Id: IEF450I Msg Disp: Normal Hardcopy Log: Yes
Jobname ==> TEST IMS Id ==>
Job Id ==> Exit Type ==> MVS
MSF Sys ==> Console Id ==> 0
User ==> Console Nm ==>
Sys Id ==> MCS Flags ==> 000000
Special Ch ==> Descriptor ==> 0000
Route ==> 00000000000000000000000000000000
Term Name ==> Report Id ==>
Message :=> IEF450I SAMPLE MESSAGE

Time ----+----1----+----2----+----3----+----4----+----5----+----6----+----7
14:58:17 ENABLE OPS.IEF450I
14:58:17 OPS3900O RULE OPS.IEF450I FOR MSG IEF450I NOW ENABLED
15:00:59 IEF450I SAMPLE MESSAGE
15:00:59 IEF450I SAMPLE MESSAGE
******** ******************** BOTTOM OF MESSAGES ****************************

Test with Live Commands
To test with live commands, or those that are issued on your system, specify YES
in the Live Commands field of an AOF Test panel as shown above.

The Live Commands field tells the AOF how it should treat host commands during
the rule test. If the value is YES, commands are issued on your system. If the
value is NO, commands are not issued; rather, they are simulated for test
purposes.

Lesson 6 - Testing Rules

PV001 6 - 15 Computer Associates

6 - 15

View Results
OPSLOG Browse A09IOPS - XE09 --- OPSVIEW -- 15:01:30 17JUN2003 COLS 001 070
COMMAND ===> SCROLL ===> PAGE
Time ----+----1----+----2----+----3----+---4----+----5----+----6----+----7
15:01:30 CAS9899W - USCOGP1P (141.202.172.25:1721) not available...waiting
15:01:50 CAS9855I Task 8D3E88 connecting to peer 130.119.146.71:1721
15:01:51 RMOCPP06 UNABLE TO OBTAIN CHECKPOINT LOCK - LOCK OWNED BY SID=XE09
15:01:53 CAS9899W - TAYHE01 (130.119.146.71:1721) not available...waiting
15:01:53 CAS9855I Task 8D4930 connecting to peer 141.202.76.3:7010
15:01:53 CAS9899W - H1QNVZ (141.202.76.3:7010) not available...waiting
15:02:04 CA-7.LOST - (00,00) SYN CLSDST FOR VTM010
15:02:04 IEA989I SLIP TRAP ID=X13E MATCHED. JOBNAME=PRLC05 , ASID=00A7.
15:02:09 CAS9855I Task 8C8190 connecting to peer 141.202.77.12:1721
15:02:09 CAS9899W - H1QNVH (141.202.77.12:1721) not available...waiting
15:02:11 RMOQPR01 NO RESPONSE - VERIFY DELIVER IS ACTIVE (RMO@)
15:02:13 RMOQPR01 NO RESPONSE - VERIFY DELIVER IS ACTIVE (RMO@)
15:02:18 OPS1370H OPSMAIN X'4000' X'0000' X'0000' 0 300 OPS1371I SSMSHUT S
15:02:18 OPS1371I SSMSHUT SHUTDOWN STATUS:
15:02:18 1 Resources, 1 Non-passive, 1 still UP
15:02:18 -----PREREQ----- ------------Active SUBREQ resources ---------
15:02:18 No shutdown subreq delays found
15:02:21 OPS1450H TSOUSER OPSS OPSLOG
******** ******************** BOTTOM OF MESSAGES *****************************

View Results
To view the results of your live command test, access OPSLOG Browse.

Lesson 6 - Testing Rules

PV001 6 - 16 Computer Associates

6 - 16

Lesson Summary

In this lesson, you learned to:
Test rules using the AOF test facility

Lesson 6 - Testing Rules

PV001 6 - 17 Computer Associates

6 - 17

Lesson 6 Activity

Lesson 6 Activity - Testing Rules
Task

Use the OPSVIEW Editors option to test the rules named NOTCTLG
and MNSTATUS, which you created in Activity 2.2.

Steps to Take
1. Access the AOF Test Rule List panel.
2. Enable the rule and select it for testing.
3. Test the rule.
4. Check the test results.

Lesson 6 - Testing Rules

PV001 6 - 18 Computer Associates

Notes:

Lesson 7 - REXX Basics

PV001 7 - 1 Computer Associates

ca.com

REXX Basics

Lesson 7

Lesson 7 - REXX Basics

PV001 7 - 2 Computer Associates

7 - 2

Lesson Objectives

After this lesson, you will be able to:
Identify common REXX instructions
Describe the difference between standard
REXX and OPS/REXX

Lesson 7 - REXX Basics

PV001 7 - 3 Computer Associates

7 - 3

Standard REXX

SAA language
Similar to normal English text
Easy to use
Allows commands to be issued to other
host applications
Provides data manipulation tools

Standard REXX
REXX, which stands for Restructured EXtended eXecutor, is the standard
common language for all of IBM’s environments under its Systems Application
Architecture (SAA). The REXX language was developed by Michael Cowlishaw,
whose book, THE REXX LANGUAGE: A Practical Approach to Programming, is
referred to throughout this lesson. REXX is the most powerful and easiest to use
command language available.

Since REXX is similar to normal English text, both casual users and computer
professionals can use it with ease. REXX enables you to manipulate familiar
objects such as words, numbers, and names.

REXX provides a robust set of operators and functions that allow you to
manipulate your data naturally. It even allows you to issue commands to host
environments.

Within your AOF rules, you can use standard REXX programming tools to make
decisions about an AOF event or further break down the data about an event.

Lesson 7 - REXX Basics

PV001 7 - 4 Computer Associates

7 - 4

REXX EXECs

Begin with /* REXX */
/* REXX */

/* Execname = TODAY */

SAY ”THE CURRENT TIME=”TIME()

SAY ”TODAY’S DATE=”DATE()

Stored in partitioned data sets
Two types of execution
– Implicit

TSO TODAY

– Explicit
EX 'TSOUSER.REXX(TODAY)'

REXX EXECs
All REXX EXECs are composed of a sequence of clauses. Clauses can span
multiple lines, and multiple clauses can exist on one line. When writing REXX
EXECs, you should begin them with the comment /* REXX */.
REXX EXECs are stored in partitioned data sets that are allocated via the
SYSEXEC DD concatenation. For example:

//SYSEXEC DD DISP=SHR,DSN=OPSMVS.EXECS

DD DISP=SHR,DSN=TSOUSER.REXX

REXX EXECs can be executed in the following ways:
Implicitly, by specifying the member name on the command line in TSO
or by specifying the member name via TSO option 6. For example:

TSO TODAY

TSO searches the SYSEXEC concatenation for the member name
you specified.

Explicitly, by specifying the name of the data set that contains the
member. For example:

EX 'TSOUSER.REXX(TODAY)'

Lesson 7 - REXX Basics

PV001 7 - 5 Computer Associates

7 - 5

Clauses

Assignment
COUNT = 1

ABENDCHECK = 'S0C4'

Command
"LISTDS 'TSOUSER.CLIST' "
ADDRESS TSO

"LISTDS 'TSOUSER.CLIST' "

Comment
/* Execname = TODAY */
/* Purpose: Return current date and */

/* current time */

Clauses
REXX programs are built upon clauses. A clause is the grouping of REXX syntax.

Clauses are composed of the following:
Zero or more blanks (ignored).
A series of tokens.
Zero or more blanks (ignored).
A semicolon (;) delimiter that may be indicated by the end of the line,
selected keywords, or the colon (:).

Lesson 7 - REXX Basics

PV001 7 - 6 Computer Associates

Types of Clauses
Assignment – A clause in the form symbol = expression. An
assignment provides a variable with its value.

Examples:
This example illustrates assigning a variable called COUNT the
value of 1:

COUNT = 1

This example shows assigning a variable called ABENDCHECK the
value 'S0C4':

ABENDCHECK = 'S0C4'

Command – A clause that consists of an expression only.
Examples:
These examples demonstrate two ways in which you can issue a
LISTDS TSO command:

To send to the default address environment
"LISTDS 'TSOUSER.CLIST'"

To first set the intended address environment
ADDRESS TSO

"LISTDS 'TSOUSER.CLIST'"

Comment – A statement used to document a program. Comments have
no impact on the execution of a program; rather, they are used to
explain certain aspects of a program (for example, information that may
be helpful in running a job).
Comments begin with “/*” and end with “*/”. You may use any
characters within these delimiters.
Examples:

/* Execname = TODAY */

/* Purpose: Return current date and current
time */

Lesson 7 - REXX Basics

PV001 7 - 7 Computer Associates

7 - 7

Clauses

Instruction

PARSE SAY

CALL DO..END

ADDRESS EXIT

IF...THEN...ELSE

(continued)

Types of Clauses
Instruction – One or more clauses that describe an action to be taken.
(Instructions are described in detail later.)

Examples:
PARSE SAY

CALL DO…END

ADDRESS EXIT

IF...THEN...ELSE

Lesson 7 - REXX Basics

PV001 7 - 8 Computer Associates

7 - 8

Clauses

Label
/* REXX */
CALL ADDTOTALS

.

.

.

EXIT
ADDTOTALS:

TGROSS_PAY = TGROSS_PAY + CURR_PAY

TTAXES = TTAXES + CURR_TAXES

RETURN

(continued)

Types of Clauses (cont.)
Label – A clause that consists of one symbol followed by a colon. In
labels, the colon acts as a clause separator; therefore, no semicolon is
required. Labels are primarily used to identify internal subroutines.

Example
The following is an example of REXX code that calls a subroutine
named ADDTOTALS:

/* REXX */

CALL ADDTOTALS

.

.

.

EXIT

ADDTOTALS:

TGROSS_PAY = TGROSS_PAY + CURR_PAY

TTAXES = TTAXES + CURR_TAXES

RETURN

Lesson 7 - REXX Basics

PV001 7 - 9 Computer Associates

7 - 9

Literal Strings

A series of characters enclosed in
single (') or double (") quotes
Can contain any character
Use single quotes to avoid confusion
with host commands

msg = 'JOB ABC UTILIZING HIGH CPU’

SAY 'TODAY''s DATE='DATE()

Literal Strings
A literal string is a series of characters that is enclosed in single (') or double (")
quotes. Literal strings can contain any characters and cannot be modified.

Tip: You should enclose literal strings with single quotes to avoid confusing them
with host commands.

Examples
This example assigns a literal string to the variable “msg”:

msg = 'JOB ABC UTILIZING HIGH CPU'

This example illustrates using the REXX SAY instruction with the DATE function:
SAY 'TODAY''s DATE='DATE()

Lesson 7 - REXX Basics

PV001 7 - 10 Computer Associates

7 - 10

Simple Variables

Name that represents a value
– salary = pay + benefit + bonus

– jobclass = ”A”

– operator = current_operator

Can consist of:
– A-Z (lowercase and uppercase)
– 0-9
– Special characters: @ # $? ! -
– First character cannot be a number

Simple Variables
The first character of a simple variable cannot be a number.

REXX converts variable names to uppercase. If you do not assign a value to a
simple variable, REXX will assign a value equal to the variable name in
uppercase.

Lesson 7 - REXX Basics

PV001 7 - 11 Computer Associates

7 - 11

varname.XXXX

Stem Tail

Compound Variables

Enable grouping of variables
Resolved at execution time

Compound Variables
A compound variable enables the substitution of variables within its name, when it
is referred to. Compound variables allow you to group variables, which is useful
when creating tables and lists. They are resolved when the program is executed.

Compound variables contain at least one period and two other characters. They
cannot start with a digit or a period. If there is only one period, it cannot be the
last character.

The stem is the variable name, up to and including the first period. The stem is
followed by the tail. (A tail can be composed of a constant symbol (0-9), a simple
variable, or a null value.)

Lesson 7 - REXX Basics

PV001 7 - 12 Computer Associates

7 - 12

Compound Variables

ID = 3

JOB.1 = 'JES2'

JOB.2 = 'CICSABC'

JOB.3 = 'TSO'

SAY JOB.ID

SAY 'JOB 'ID' ='JOB.ID

(continued)

Compound Variables
Here are some examples of compound variables:

ID = 3

JOB.1 = 'JES2'

JOB.2 = 'CICSABC'

JOB.3 = 'TSO'

SAY JOB.ID

SAY 'JOB 'ID' ='JOB.ID

Lesson 7 - REXX Basics

PV001 7 - 13 Computer Associates

7 - 13

Operators

Arithmetic: + - * / % //
count = 0

gross_pay = total_hrs * curr_rate

count = count + 1

Comparative: = < > <> ¬=
IF TODAY <> 'FRIDAY' THEN RETURN

Concatenation: blank || abuttal
date = mm dd yy

date = mm||dd||yy

date = mm'/'dd'/'yy

Operators
An operator is a symbol that indicates the action that is to be performed on
operands.

Types of Operators
Arithmetic – Character strings that are numbers can be combined using
the following operators:

+ Add
- Subtract
* Multiply
/ Divide
% Integer divide. This operator divides and returns the integer.
// Remainder. This operator divides and returns the remainder.

Lesson 7 - REXX Basics

PV001 7 - 14 Computer Associates

Examples:
count = 0

gross_pay = total_hrs * curr_rate

count = count + 1

Comparative – An operator that compares two terms and returns the
value 1 if the result is true or 0 if it is not.

= Equal
< Less than
> Greater than
<> or ¬= Not equal

Example:
IF TODAY <> 'FRIDAY' THEN RETURN

Concatenation – An operator that combines two strings to form one
string by appending the second string to the end of the first string:

blank - Concatenate with one blank
| | or abuttal - Concatenate without an intervening blank

Note: An abuttal is where two terms in an expression are adjacent
and are not separated by an operator.
Examples:

date = mm dd yy

date = mm||dd||yy

date = mm'/'dd'/'yy

Lesson 7 - REXX Basics

PV001 7 - 15 Computer Associates

7 - 15

Operators
Logical: & |

A B A&B A|B
T T 1 1
T F 0 1
F T 0 1
F F 0 0

IF ABEND = 'S0C6' & (JOB = 'TSO' |, JOB = 'VTAM')
THEN CNT = CNT + 1

(continued)

Lesson 7 - REXX Basics

PV001 7 - 16 Computer Associates

7 - 16

Instructions

IF…THEN…ELSE
JOB=MSG.JOBNAME /* set JOB to issuer of msg */
IF JOB='MYJOBA' THEN RETURN 'SUPPRESS'

ELSE RETURN 'DELETE'

SELECT…WHEN…OTHERWISE…END
SELECT

WHEN JOB = 'PAYROLL' THEN PY=PY + 1
WHEN JOB = 'ACCTNG' THEN AC=AC + 1
WHEN JOB = 'USER' THEN UR=UR + 1

OTHERWISE EXIT
END

Types of Instructions
IF…THEN…ELSE

Use this statement to conditionally execute an instruction or group
of instructions or to select between two alternatives. It has the
following form:
IF expression [;] THEN [;] instruction [ELSE[;]
instruction]

SELECT…WHEN…OTHERWISE…END
Use this statement to conditionally execute one of several
alternative instructions. This statement is more efficient and
effective than using a nested IF...THEN…ELSE statement.
It has the following form:
SELECT ; whenlist [OTHERWISE [;]

[instructionlist]] END ;

Whenlist - One or more whenconstructs of the form:
WHEN expression [;] THEN [;] instruction

Instructionlist - A sequence of instructions.

Lesson 7 - REXX Basics

PV001 7 - 17 Computer Associates

7 - 17

Instructions

DO…END
IF RC <> 0 THEN

DO

SAY 'FAILED RC ='RC

CALL RECOVER

END

DO expr_count
DO 5

SAY 'REXX DO TEST'

END

(continued)

Types of Instructions
DO…END

Use this statement to group instructions together. The instructions
are executed once. It has the following form:

DO ;

[instructionlist]

END ;

Instructionlist - A sequence of instructions.
In the following example, when a return code is greater or less than
0 (zero) the rule logic executes a set of instructions once:

IF RC <> 0 THEN

DO

SAY 'FAILED RC ='RC

CALL RECOVER

END

Lesson 7 - REXX Basics

PV001 7 - 18 Computer Associates

DO expr_count
Use this statement to group instructions together and execute them
repetitively (in a loop). It has the following form:

DO expr_count ;

[instructionlist]

END ;

expr_count - An expression which evaluates to a non negative
whole number.

instructionlist - A sequence of instructions.

This example shows how you can execute an instruction five times:
DO 5

SAY 'REXX DO TEST'

END

Lesson 7 - REXX Basics

PV001 7 - 19 Computer Associates

7 - 19

Instructions

DO var = expr_init to expr_to

DO COUNT = 1 TO 10
SAY 'VALUE OF COUNT = 'COUNT

END

JOB.1 = 'JES2'
JOB.2 = 'VTAM'
JOB.3 = 'TSO'
DO I = 1 TO 3

SAY 'JOB = 'JOB.I
END

(continued)

Types of Instructions
DO var = expr_init to expr_to

Use this statement to group instructions together and execute them
repetitively (in a loop). It has the following form:

DO var = expr_init to expr_to ;

[instructionlist]

END ;

expr_init and expr_to - Expressions which evaluate to whole
numbers of either sign.

Instructionlist - A sequence of instructions.

Lesson 7 - REXX Basics

PV001 7 - 20 Computer Associates

These examples show how you can execute a sequence of
instructions more than once using a variable:

DO COUNT = 1 TO 10

SAY 'VALUE OF COUNT = 'COUNT

END

JOB.1 = 'JES2'

JOB.2 = 'VTAM'

JOB.3 = 'TSO'

DO I = 1 TO 3

SAY 'JOB = 'JOB.I

END

Lesson 7 - REXX Basics

PV001 7 - 21 Computer Associates

7 - 21

Instructions (continued)

DO WHILE expr_while
LOOPCNT = 0
DO WHILE LOOPCNT < 5

LOOPCNT = LOOPCNT + 1
SAY 'VALUE of LOOPCNT = 'LOOPCNT

END

DO UNTIL expr_until
LOOPCNT = 0
DO UNTIL LOOPCNT < 5

LOOPCNT = LOOPCNT + 1
SAY 'VALUE of LOOPCNT = 'LOOPCNT

END

Types of Instructions
DO WHILE expr_while

Use this statement to group instructions together and execute them
conditionally. The WHILE test is made before each iteration. It has
the following form:

DO WHILE expr_while ;

[instructionlist]

END ;

expr_while - a logical expression which evaluates to zero or one.

instructionlist - A sequence of instructions.

Note: Make sure the value of the expression is false at some point so
that the loop can be exited.

Lesson 7 - REXX Basics

PV001 7 - 22 Computer Associates

This example tests whether the value of the expression LOOPCNT
is less than five:

LOOPCNT = 0

DO WHILE LOOPCNT < 5

LOOPCNT = LOOPCNT + 1

SAY 'VALUE of LOOPCNT = 'LOOPCNT

END

DO UNTIL expr_until
Use this statement to group instructions together and execute them
conditionally. The UNTIL test is made after each iteration. It has the
following form:

DO UNTIL expr_until ;

[instructionlist]

END ;

expr_until - a logical expression which evaluates to zero or one.

instructionlist - A sequence of instructions.

Note: Make sure the value of the expression is false at some point so
that the loop can be exited.

This example tests whether the value of the expression LOOPCNT
is less than five:

LOOPCNT = 0

DO UNTIL LOOPCNT < 5

LOOPCNT = LOOPCNT + 1

SAY 'VALUE of LOOPCNT = 'LOOPCNT

END

Lesson 7 - REXX Basics

PV001 7 - 23 Computer Associates

7 - 23

Instructions (continued)

DO FOREVER
DO FOREVER

CALL ISSUEWTOR

IF RC = 36 THEN

ITERATE

ELSE

LEAVE

END

Types of Instructions
DO FOREVER

Use this statement to group instructions together and execute them
forever (until the condition is satisfied). It has the following form:

DO FOREVER ;

[instructionlist]

END ;

instructionlist - A sequence of instructions

The following rule logic executes forever unless the ISSUEWTOR
subroutine sets a return code of 36:

DO FOREVER

CALL ISSUEWTOR

IF RC = 36 THEN ITERATE

ELSE LEAVE

END

Lesson 7 - REXX Basics

PV001 7 - 24 Computer Associates

7 - 24

Instructions (continued)

ARG var1 var2 var3
/* REXX */
/* EXECNAME=ADDNUMS */
ARG NUM1 NUM2
SUM = NUM1 + NUM2
SAY 'THE SUM OF 'NUM1' AND 'NUM2'='SUM

TSO EX 'YOUR.REXX(ADDNUMS)' '30' '40'

PARSE VAR name [template]
/* Obtain the abend code from this message */
/* and put in ABEND var */
PARSE VAR MSG.TEXT . 'ABEND=' ABEND

Types of Instructions
ARG var1 var2 var3

Use this statement to enable your REXX EXEC to be invoked with
arguments. It has the following form:

ARG [variable] ;

variable - A list of symbols separated by blanks and/or patterns.

When the following REXX code is invoked via the TSO EX
statement, it causes the program to execute the arguments
NUM1=30 and NUM2=40:

/* REXX */

/* EXECNAME=ADDNUMS */

ARG NUM1 NUM2

SUM = NUM1 + NUM2

SAY 'THE SUM OF 'NUM1' AND 'NUM2'='SUM

Lesson 7 - REXX Basics

PV001 7 - 25 Computer Associates

To execute the code, enter the following:
TSO EX 'YOUR.REXX(ADDNUMS)' '30' '40'

PARSE VAR name [template]
Use this statement to assign data to one or more variables. It has
the following form:

PARSE VAR name [template] ;

name - A valid variable name (that is, it cannot begin with a period
or digit). The value of the variable specified by name is parsed.

template - A list of symbols separated by blanks and/or patterns.

This example illustrates breaking down a data string:
/* Obtain the abend code from this message */

/* and put in ABEND var */

PARSE VAR MSG.TEXT . 'ABEND=' ABEND

Lesson 7 - REXX Basics

PV001 7 - 26 Computer Associates

7 - 26

Instructions (continued)

PULL [template]
AUTMVOLS=OPSDEV('V','AUTM*')
DO AUTMVOLS

PULL RECORD
STATUS = WORD(RECORD,3)
VOLUME = WORD(RECORD,2)
IF STATUS ¬= 'ONLINE' THEN

CALL NOTIFY VOLUME
END
EXIT
NOTIFY:
ARG VOLUME
ADDRESS WTO

"MSGID(OPSAUTO1) TEXT('AUTM VOLUME –",
VOLUME" IS NOT ONLINE') ROUTE(2) DESC(1)",
MCSFLAGS(HRDCPY)"

RETURN

Types of Instructions
PULL [template]

Use this statement to retrieve one record from the external data
queue (EDQ). You can think of the EDQ as an internal “scratch
pad,” or stack, to which various OPS/REXX host environments and
functions return requested data when they are invoked via an AOF
rule or OPS/REXX program that is running in an OPSOSF server.
The PULL instruction has the following form:

PULL [template] ;

template - A list of symbols separated by blanks and/or patterns.

Lesson 7 - REXX Basics

PV001 7 - 27 Computer Associates

Example:
AUTMVOLS=OPSDEV('V','AUTM*')

DO AUTMVOLS

PULL RECORD

STATUS = WORD(RECORD,3)

VOLUME = WORD(RECORD,2)

IF STATUS ¬= 'ONLINE' THEN

CALL NOTIFY VOLUME

END

EXIT

NOTIFY:

ARG VOLUME

ADDRESS WTO

"MSGID(OPSAUTO1) TEXT('AUTM VOLUME –",
VOLUME" IS NOT ONLINE') ROUTE(2) DESC(1)",
MCSFLAGS(HRDCPY)"

RETURN

Lesson 7 - REXX Basics

PV001 7 - 28 Computer Associates

7 - 28

Built-in Functions
POS(string1,string2)
SAY POS('MVS','OPS/MVS')
IF POS('S0C4',MSG) > 0 THEN EXIT

SUBSTR(old,start,newlength)
STUFF = 'ABCDEFGHI'

SUBSTR(STUFF,1,3) = 'ABC'
SUBSTR(STUFF,6,3) = 'FGH'

WORD(string,n)
MSG = '$HASP100 JOBABC ON INTRDR'

WORD(MSG,1) = '$HASP100'
WORD(MSG,2) = 'JOBABC'
WORD(MSG,4) = 'INTRDR'

Built-in Functions
In REXX, “built-in functions” are special reserved routines that can
receive data, process it, and return a value. As you will learn in an
upcoming lesson, OPS/REXX has its own set of built-in functions that
provide you with even greater functionality.

Types of Built-in Functions
POS(string1,string2)

Use this function to return the position of one string, string1 in
another, string2. If the string is not found, 0 is returned.
Example:

SAY POS('MVS','OPS/MVS')

IF POS('S0C4',MSG) > 0 THEN EXIT

SUBSTR(old,start,newlength)
Use this function to return a portion of old, beginning with start
position and continuing for newlength.

Lesson 7 - REXX Basics

PV001 7 - 29 Computer Associates

Example:
STUFF = 'ABCDEFGHI'

SUBSTR(STUFF,1,3) = 'ABC'

SUBSTR(STUFF,6,3) = 'FGH'

WORD(string,n)
Use this function to return the nth blank-delimited word in string.
The following example illustrates using the WORD() function against
the variable MSG:

MSG = '$HASP100 JOBABC ON INTRDR’

WORD(MSG,1) = '$HASP100'

WORD(MSG,2) = 'JOBABC'

WORD(MSG,4) = 'INTRDR'

Lesson 7 - REXX Basics

PV001 7 - 30 Computer Associates

7 - 30

Built-in Functions (continued)

WORDS(string)
JOBS = 'CICSABC CICSDEF PAYRLL1'
SAY WORDS(JOBS)

TIME(option)
SAY TIME() /* 12:54:01 */
SAY TIME('H') /* 16 */
SAY ATIME('C') /* 4:54 pm */

DATE(option)
SAY DATE() /* 07 Dec 2003 */
SAY DATE('U') /* 12/07/03 */
SAY DATE('W') /* Tuesday */

Types of Functions
WORDS(string)

Use this function to return the number of blank-delimited words in
string.
Example:

JOBS = 'CICSABC CICSDEF PAYRLL1'

SAY WORDS(JOBS)

TIME(option)
Use this function to return the system time in the format specified by
option.
This example returns the time in the default format (hh:mm:ss):

SAY TIME() /* 12:54:01 */

This example returns the time in the hours format (hh):
SAY TIME('H') /* 16 */

This example returns the time in the civil format (hh:mmxx):
SAY ATIME('C') /* 4:54 pm */

Lesson 7 - REXX Basics

PV001 7 - 31 Computer Associates

DATE(option)
Use this function to return the system date in the format specified by
option.
This example returns the date in the default format (dd Mmm yyyy):

SAY DATE() /* 07 Dec 2003 */

This example returns the date in the USA format (mm/dd/yy):
SAY DATE('U') /* 12/07/03 */

This example returns the date in the weekday format:
SAY DATE('W') /* Tuesday */

Lesson 7 - REXX Basics

PV001 7 - 32 Computer Associates

7 - 32

A Good Reference

The REXX Language: A Practical
Approach to Programming

by
M.F. Cowlishaw

A Good Reference
For more detailed information about standard REXX, refer to any REXX manual.
A highly recommended book is THE REXX LANGUAGE: A Practical Approach to
Programming by M.F. Cowlishaw. You can order this book from Prentice-Hall.

Lesson 7 - REXX Basics

PV001 7 - 33 Computer Associates

7 - 33

OPS/REXX

Subset of standard REXX
Easy to learn
Powerful data-handling tools
Understandable error messages

OPS/REXX
A crucial part of Unicenter CA-OPS/MVS, OPS/REXX is a powerful,
SAA-compliant programming language that adds to standard REXX a
set of extensions that automate and enhance the productivity of OS/390
operations.
Because OPS/REXX differs only slightly from standard REXX, this
section explains the differences between OPS/REXX and standard
REXX.
CA chose REXX as the programming language for OPS/MVS because
it is the most powerful and easiest-to-use command language available.
OPS/REXX provides a simple but capable high-level language to write
operating system exits.

OPS/REXX Performs Better
The OPS/REXX interpreter runs many times faster than the TSO EXEC
command for similar programs. Also, when you use OPS/REXX in AOF
environment, all the code is pre-interpreted to speed processing even
further. OPS/REXX generally runs so speedily that most users do not
need to rewrite functions in assembler language.

Lesson 7 - REXX Basics

PV001 7 - 34 Computer Associates

OPS/REXX provides automation from the point where it intercepts
messages and commands from JES2 or JES3 and OS/390.
Approaches that try to use standard REXX or NetView for automation
are more limited; they can only compare command and message
events against categories in an event table and execute a program if
the event matches one of those categories.

OPS/REXX Is Easy to Learn
If you can program in any language, you can learn to program in
OPS/REXX. All variables are treated as character strings, which
OPS/REXX can convert to numeric values and reconvert to character
strings automatically as required.

Powerful Data Handling Tools
OPS/REXX provides facilities for writing structured programs. It
supports all common program structures such as DO WHILE ...END
and IF...THEN...ELSE. OPS/REXX also provides many built-in
functions to handle dates and times, and to convert binary and
hexadecimal data to or from decimal or character formats.
OPS/REXX also supports subroutine and function calls to and from
other languages, as well as to and from other OPS/REXX programs.

Understandable Error Messages
In developing standard REXX, IBM designed understandable error
messages. Because OPS/REXX is so similar to standard REXX, CA
has adopted these well thought-out error messages for Unicenter
CA-OPS/MVS. The Cowlishaw book describes messages with error
codes up to 49. Online message documentation describes errors with
higher codes.

Uses of OPS/REXX Within Unicenter CA-OPS/MVS
The following Unicenter CA-OPS/MVS components use OPS/REXX:

AOF rules are actually OPS/REXX programs that can respond
automatically to system events. The availability of OPS/REXX’s
general purpose programming tools in rules gives you an unlimited
ability to automate responses to these events.
Important parts of OPSVIEW such as AOF EDIT, the ISPF Dialog
Manager application with which you create and update rules, are
written in OPS/REXX. OPS/REXX’s interface to the Dialog Manager
is as complete and powerful as that of standard REXX.
You can write AOF asynchronous procedures (that execute in
Unicenter CA-OPS/MVS server address spaces) in both OPS/REXX
and the standard REXX language.

Lesson 7 - REXX Basics

PV001 7 - 35 Computer Associates

7 - 35

Similarities

Standard REXX

REXX programming structures

Standard SAA REXX functions

Numbers with decimal points
and exponents; numeric
digits with precision up to 20

Strings up to 32,000
characters long

OPS/REXX

Supported

Supported,
except for I/O functions

Supported

Supported

Similarities
Both OPS/REXX and the standard REXX language enable you to issue
commands to various host environments. Both versions of REXX offer symbolic
substitution that is simpler than in the TSO/E CLIST language or in z/OS JCL.
The current version of OPS/REXX supports these standard REXX features:

All REXX programming structures as defined in the book THE REXX
LANGUAGE: A Practical Approach to Programming by M.F.
Cowlishaw. For example, OPS/REXX supports counter variables on DO
statements and the PROCEDURE statement.
All standard SAA REXX functions plus most of the functions
documented in the second edition of the Cowlishaw book, except for
the I/O functions (CHARIN, CHAROUT, CHARS, LINEIN, LINEOUT,
and LINES)
Numbers with decimal points and exponents, as well as numeric digits
with a precision up to 20 (default 9)
Strings containing as many as 32,000 characters, including strings to
ISPEXEC to support long commands and values of all REXX variables
including global variables. OPS/REXX can build dynamic display areas
in panels.

Lesson 7 - REXX Basics

PV001 7 - 36 Computer Associates

Unicenter CA-OPS/MVS REXXMAXSTRINGLENGTH parameter enables you to
use a lower maximum string length if you wish.

Lesson 7 - REXX Basics

PV001 7 - 37 Computer Associates

7 - 37

Differences
Standard REXX

External subroutines are
resolved only when they are
called during execution

When a PULL is executed
and the external data queue
is empty, a read is done from
default character input
stream

PUSH instruction

ADDRESS, CALL,
INTERPRET, OPTIONS,
RETURN, SIGNAL, TRACE,
UPPER instructions

OPS/REXX

External subroutines are
resolved and bound with
main program prior to
execution
A PULL on an empty
external data queue results
in a NULL (zero length) line
being returned

No PUSH instruction

Supported, but are
implemented differently

Differences
In addition to the similarities listed above, there are several important differences
between OPS/REXX and standard REXX. These include:

In OPS/REXX, external subroutines are resolved and bound with the
main program prior to execution. This characteristic provides a major
performance benefit for OPS/REXX when calling external subroutines,
particularly in the AOF rule environment. One negative aspect of this
characteristic is that all subroutines must be available at the time an
OPS/REXX program or AOF rule is compiled or enabled on any
system, even if some subroutines are never actually called during
execution in that environment. For example, consider the following
code:

if OPSINFO("SMFID") == "SYSA" then

call EXTSUB1

else

call EXTSUB2

Lesson 7 - REXX Basics

PV001 7 - 38 Computer Associates

Clearly, the EXTSUB1 subroutine is called only when the code
executes on SYSA. Nevertheless, OPS/REXX requires the EXTSUB1
subroutine (or load module) to be available on every system. In
standard REXX, external subroutines are resolved only when they are
called during execution.
In Unicenter CA-OPS/MVS version 4.1.0 or higher, you can use the
OPSWXTRN keyword of the OPTIONS instruction to indicate to
OPS/REXX which external subroutines, built-in functions, and load
modules are not absolutely required to be present prior to execution.
The presence of the OPSWXTRN keyword in an OPTIONS instruction
allows programs containing this OPTIONS instruction to be used by
both OPS/REXX and standard REXX, so the portability of REXX code
that uses this instruction is unaffected.
In the Cowlishaw definition of REXX, when a PULL instruction is
executed and the external data queue is empty, a read is done from the
“default character input stream.” In OPS/REXX, this is not practical
because within a rule, the only possible default character input stream
is the console. Prompting the operator for the next line of input would
be undesirable. Therefore, in OPS/REXX a PULL on an empty external
data queue results in a NULL (zero length) line being returned.
The PUSH instruction is not implemented in OPS/REXX. Its use results
in REXX error number 64, which is the unimplemented feature error.
The QUEUE instruction is implemented in OPS/REXX, and, in most
cases, you can use it to accomplish the same results.
The ADDRESS, CALL, INTERPRET, OPTIONS, RETURN, SIGNAL,
TRACE, and UPPER instructions are supported in OPS/REXX, but they
are implemented differently than they are in standard REXX. See your
Unicenter CA-OPS/MVS documentation for specific details.

Lesson 7 - REXX Basics

PV001 7 - 39 Computer Associates

7 - 39

Execution

OPS/REXX Program

OX

OI

Batch Job

Execution
You can execute an OPS/REXX program in any of these ways:

Explicitly, via the OX (OPSEXEC) command.
Implicitly, via the OI (OPSIMEX) command.
As batch jobs.

Use the OX (OPSEXEC) and OI (OPSIMEX) commands to execute OPS/REXX
programs in source code or precompiled format. Use the OXCOMP and OICOMP
commands to compile OPS/REXX programs without executing them.

When used with the AOF, OPS/REXX programs have a special structure and are
called rules. Outside the AOF environment, OPS/REXX programs are simply
called programs.

Unless you have precompiled rules, Unicenter CA-OPS/MVS compiles rules
when you activate them with the ENABLE command and runs them strictly from
their internal form (rather than reloading and reinterpreting them each time they
are needed). Outside the AOF environment, OPS/REXX programs execute from
source code or from staged internal forms.

Lesson 7 - REXX Basics

PV001 7 - 40 Computer Associates

Differences Between Explicit and Implicit Program Execution
The only difference between implicit and explicit program execution is how you
specify the name of the program to execute and where OPS/REXX looks for the
name:

With explicit execution, you supply the name of the data set that
contains the program.
With implicit execution, you provide only a program name. OPS/REXX
then locates that program in the library or libraries allocated to
DDNAME OPSEXEC or SYSEXEC.

Lesson 7 - REXX Basics

PV001 7 - 41 Computer Associates

7 - 41

Lesson Summary

In this lesson, you learned to:
Identify common REXX instructions
Describe the difference between standard
REXX and OPS/REXX

Lesson 7 - REXX Basics

PV001 7 - 42 Computer Associates

7 - 42

Lesson 7 Assessment

Lesson 7 Assessment
1. True/False: OPS/REXX adds to standard REXX a set of extensions that
automate and enhance the productivity of OS/390 operations.
__

2. What would you use this REXX instruction for? PARSE VAR name [template]
__

3. Which REXX function returns the time in this format? /* 11:56:04 */
__

4. Which REXX instruction is used to group instructions together and execute
them conditionally?
__

Lesson 7 - REXX Basics

PV001 7 - 43 Computer Associates

Lesson 7 Assessment (continued)
5. True/False: REXX programs are built upon clauses.
__

6. The PUSH instruction is not available in OPS/REXX. Which alternative
instruction can you use to achieve the same results?

__

7. What would you use this REXX instruction for? IF…THEN…ELSE
__

8. Which REXX operator combines two strings by appending the second string
to the end of the first one?

__

9. Name four REXX arithmetic operators.
__

10. True/False: OPS/REXX programs are called rules outside the AOF
environment.

__

11. True/False: Standard SAA REXX I/O functions are supported in OPS/REXX.
__

12. What would this function return? SAY DATE('U')
__

13. True/False: In OPS/REXX, a PULL instruction to an empty external data
queue results in a null line being returned.

__

Lesson 7 - REXX Basics

PV001 7 - 44 Computer Associates

Lesson 7 Assessment (continued)
14. Define an instruction in REXX.
__

15. Describe the difference in how standard REXX and OPS/REXX resolve
external subroutines.

__

Lesson 8 - AOF Variables

PV001 8 - 1 Computer Associates

ca.com

AOF Variables

Lesson 8

Lesson 8 - AOF Variables

PV001 8 - 2 Computer Associates

8 - 2

Lesson Objectives

After this lesson, you will be able to:
Describe the different types of variables that
are available within Unicenter CA-OPS/MVS
Explain how variables are processed within
rules

Lesson 8 - AOF Variables

PV001 8 - 3 Computer Associates

8 - 3

AOF Variables

z/OS

Unicenter CA-OPS/MVS

Automated Operations Facility
(AOF)

Automation
Analyzer EasyRule OPS/REXX OPSLOG

OPSVIEW

AOF Variables
When you create rules to trigger a particular system event, you may need to know
specific information about the event such as the name of the job that issued a
message, a message’s route codes, or the name of the console that issued a
system command. Also, the logic of your particular automated application may
require data to be saved over various executions of an event or between different
events. You can obtain this type of functionality by using AOF variables.

Lesson 8 - AOF Variables

PV001 8 - 4 Computer Associates

8 - 4

What Are Variables?

Language objects that may take
different values
Rules use them to accomplish tasks

System Event Action

Rule

If something happens
(system event),

then do something
(action)

What Are Variables?
Variables are data items whose values can change while a program is running.
To change the value of a variable, you assign a new value to it.

Rules use variables to accomplish tasks, such as retaining data across various
executions of a rule.

Lesson 8 - AOF Variables

PV001 8 - 5 Computer Associates

8 - 5

Types of Variables

Dynamic
Static
Event-related
Local
Global
Temporary

Lesson 8 - AOF Variables

PV001 8 - 6 Computer Associates

8 - 6

Dynamic Variables

Use these variables as reference
variables within logic of a rule
User-defined
Created each time a rule executes (that
is, data is only available as rule is
executing)
Available in)PROC and)TERM
sections of rule

Dynamic Variables
Dynamic variables are simple variables that are user-defined and created each
time a rule executes. The data of a dynamic variable is available only when a rule
is executing.

Dynamic variables are:
Simple variables used only in the)PROC or)TERM section of rules.
Non-global compound symbols.
Examples of dynamic variable names include COUNT and
JOB.COUNT.

Characteristics
The name can be up to 256 characters in length.
The value can be up to 32,000 bytes in length.
They can be compound symbols such as JOB.COUNT (although they
should not contain a reserved stem used by event variables such as
MSG.xxx or CMD.xxx).

Lesson 8 - AOF Variables

PV001 8 - 7 Computer Associates

The value of an uninitialized dynamic variable (a variable that has not
yet been assigned a value) is the variable name itself.
The three special variables in standard REXX (RC, RESULT, and
SIGL) are always dynamic variables in OPS/REXX.

Lesson 8 - AOF Variables

PV001 8 - 8 Computer Associates

8 - 8

Lesson 8 - AOF Variables

PV001 8 - 9 Computer Associates

8 - 9

Static Variables

Use these variables when you want
data to be shared between multiple
executions of the same rule
Rule-specific
Maintain a fixed value across rule
executions
Available only in)INIT section of rule

Static Variables
Static variables maintain a fixed value across multiple executions of a
single rule. This means that data can be shared between executions of
the same rule.
Examples of static variable names include XYZ, JOBS, and A5.

Static variables have these characteristics:
They are only available in the)INIT section of a rule.
They are rule-specific.
The same variable name used in the initialization sections of two
different rules refers to two different variables.
They do not allow serial access. Use global variables and the
OPSVALUE function if you require serialization.
The name can be up to 50 characters in length.

Lesson 8 - AOF Variables

PV001 8 - 10 Computer Associates

The value can be up to 256 bytes in length. During a rule section’s
execution, the length of a static variable may grow to the maximum
allowed for OPS/REXX variables. However, after the section containing
the static variable executes, Unicenter CA-OPS/MVS truncates the
static variable’s value to 256 bytes.
They cannot be a compound symbol (for example, JOB.COUNT).
They are deleted upon rule disablement.
They cannot be used with the VALUE function.
They cannot be used in INTERPRET statements.
They cannot be used as host variables in SQL statements.
They are ignored when specified on the TRACE VAR instruction.
Note: If you intend to use status variables to pass data between rule
sections or between multiple executions of the rule, the data must be
contained within the first 256 bytes of the variable.

Lesson 8 - AOF Variables

PV001 8 - 11 Computer Associates

8 - 11

Lesson 8 - AOF Variables

PV001 8 - 12 Computer Associates

8 - 12

How Rules Process Simple Variables

)INIT

)PROC

)TERM

Event Definition

Initialization

Processing

Termination

How Rule Sections Process Variables
As you learned earlier, a rule contains sections. Variables are processed in the
)INIT,)PROC, and)TERM sections of a rule.

Variable Processing in the)INIT Section
When the)INIT section of any rule references a simple variable (a
variable that is not a stem variable):

The variable keeps its value between executions of a rule.
If a variable name referenced in the)INIT section also appears in
the)PROC and/or)TERM section of a rule, Unicenter CA-OPS/MVS
associates all references with the same variable.

Lesson 8 - AOF Variables

PV001 8 - 13 Computer Associates

Variable Processing in the)PROC Section
When the)PROC section of any rule references a simple variable:

If the)INIT section of the rule also referenced this variable,
Unicenter CA-OPS/MVS treats the variable as static, and the
variable keeps the value it received in the)INIT section or during a
previous execution of the rule.
If the)INIT section of the rule does not reference the same variable,
Unicenter CA-OPS/MVS considers the variable dynamic and
reinitializes it each time the)PROC section executes.

Variable Processing in the)TERM Section
When the)TERM section of any rule references a simple variable:

If the)INIT section of the rule also referenced this variable,
Unicenter CA-OPS/MVS treats the variable as static, and the
variable keeps the value it received in the)INIT section or during a
previous execution of the rule.
If the)INIT section of the rule does not reference the same variable,
Unicenter CA-OPS/MVS considers the variable dynamic and sets
the variable to the value of its name.

Lesson 8 - AOF Variables

PV001 8 - 14 Computer Associates

8 - 14

eventtype.XXXX

Reserved
Stem

Tail

Event-Related Variables

Use these variables to obtain detailed
information about a system event the
AOF is evaluating

Event-Related Variables
Event-related variables contain information about specific system events. For
example, a variable called MSG.TEXT can store the text of a specific WTO event.

Event-related variables correspond to the rule event types:
Automatic Restart Management variables (ARM)
Application Program Interface (API)
Command event variables (CMD)
Delete-operator-message event variables (DOM)
End-of-job event variables (EOJ)
End-of-memory event variables (EOM)
End-of-step event variables (EOS)
Variable events for global variables (GLV)
Message event variables (MSG)
OMEGAMON event variables (OMG)
Request event variables (REQ)

Lesson 8 - AOF Variables

PV001 8 - 15 Computer Associates

Security event variables (SEC)
Screen event variables (SCR)
Time limit excession event variables (TLM)
Time-of-day event variables (TOD)
UNIX System Services event variables (USS)

For detailed information about each event-related variable according to event
type, see your Unicenter CA-OPS/MVS documentation.

Lesson 8 - AOF Variables

PV001 8 - 16 Computer Associates

8 - 16

Event-Related Variables

Correspond to rule event types
– Example command (CMD) event variables:

CMD.TEXT
CMD.JOBNAME
CMD.CONSNAME

– Example message (MSG) event variables:
MSG.TEXT
MSG.JOBNAME
MSG.REPLYID

Available only in)PROC section of rule
Use OPSLOG Browse to display values

(continued)

Event-Related Variables
As you just learned, event-related variables correspond to rule event types. This
section discusses some of the more commonly used variables. For detailed
information about each type of variable, see your documentation.

Command Event Variables
Within the command (CMD) rule type, you will have access to various
CMD.xxxx variables. Some popular command event variables are:

CMD.TEXT
Contains the text of the current command.

CMD.JOBNAME
Contains the name of the job that issued the command.

CMD.CONSNAME
Contains the name of the console that issued the command.

Lesson 8 - AOF Variables

PV001 8 - 17 Computer Associates

Message Event Variables
Within the message (MSG) rule type, you will have access to various
MSG.xxxx variables. Some popular message event variables are:

MSG.TEXT
Contains the text of the current message.

MSG.JOBNAME
Contains the name of the job that issued the message.

MSG.REPLYID
Contains the reply ID of WTOR messages.

Event-related variables have these characteristics:
They are available only in the)PROC section of a rule.
They are automatically provided by the AOF engine.
Changes made to event-related variables change the corresponding
information about the event itself.
Example: Changing the contents of the MSG.TEXT variable in a
message rule changes the text of the WTO message. Modifying the
CMD.TEXT variable in a command rule changes the original command
that was entered.
Note: Some event-related variables are designated as read-only;
changing the value of a read-only variable does not cause an error, but
the change has no effect. Because the values of read-only event-
related variables do not change, all rules that execute for a single event
have the same event data.
Changes to an event-related variable by multiple rules are cumulative.
The first rule to execute receives original event information.
Subsequent rules (executing in response to the same event) receive
event information modified by each preceding rule.
Note: Because rules cannot change the value of a read-only variable,
the variable always contains original event information.
All rules that would normally execute in response to an event do so
regardless of how each rule changes an event-related variable.
Example: If a message rule changes the message ID contained in the
MSG.ID variable, all rules matching the original message ID still
execute (and no rules matching the new message ID execute).
You can display the values of most event-related variables in OPSLOG
Browse via the DISPLAY command.

Lesson 8 - AOF Variables

PV001 8 - 18 Computer Associates

Changes to Event-related Variables
Changing the value of some event-related variables also changes the
event. For example, changing the value of the MSG.TEXT variable
alters the text of the associated WTO. Other “read only” event-related
variables cannot be modified.
Changes to modifiable event-related variables are cumulative. The first
rule that an event triggers gets the original event information; rules for
the same event executing later get modified copies of this information.
Even if a rule modifies an event-related variable, all rules eligible to
execute for an event still execute. For instance, if a message rule
modifies the variable MSG.TEXT, all rules referencing the original
message text execute, but rules referencing the revised text do not
execute.
Because the values of read-only event-related variables do not change,
all rules that execute for a single event get the same event data.

Lesson 8 - AOF Variables

PV001 8 - 19 Computer Associates

8 - 19

Lesson 8 - AOF Variables

PV001 8 - 20 Computer Associates

8 - 20

Use these variables when you share
data between different rules for events
that occur in the same address space
Available only in)PROC section of rule

GLVJOBID.XXXX

Reserved
Stem

Tail

Local Variables

Local Variables
Local variables are compound symbols that begin with a reserved stem of
GLVJOBID. They allow you to share data between different rules for events that
occur in the same address space. This enables you to save the data generated
during one event created by a job and then use that data within another event
created by the same job.

The stem is GLVJOBID, up to and including the first period. The stem is followed
by the tail.

Characteristics
They are only available in the)PROC section of a rule.
They are unique to the address space that triggered the rule.
The name can be up to 78 characters in length, including the
GLVJOBID stem.
The value can be up to 32,000 bytes in length.

Lesson 8 - AOF Variables

PV001 8 - 21 Computer Associates

They are automatically deleted by Unicenter CA-OPS/MVS when the
address space with which they are associated terminates.
Some messages appear to be issued from a particular job, but they are
actually issued on behalf of another address space. For example, the
$HASP100 message that indicates a job is on the internal reader is
actually issued from the JES address space, not the job’s address
space. Before selecting a GLVJOBID variable, use the OPSLOG
Browse JOBNAME column to verify that the message is being issued
from a unique address space.

Lesson 8 - AOF Variables

PV001 8 - 22 Computer Associates

8 - 22

)MSG $HASP375
)PROC

/***/
/* Rule Purpose: Set a local variable to keep track of the most */
/* current # of lines exceeded during run time */
/* This variable will be checked when the job */
/* ending event occurs. */
/* $HASP375 jobname ESTIMATE EXCEEDED BY # LINES */
/***/
IF WORD(MSG.TEXT,5) < > 'BY' THEN RETURN
GLVJOBID.EXCEEDED = WORD(MSG.TEXT,6) /* # of lines */

Local Variable Example - Rule 1

Local Variable Example - Rule 1
The above rule logic sets a local variable, GLVJOBID.EXCEEDED, that keeps
track of the number of output lines that were exceeded during the job’s run time;
the variable is checked when the event that ends the job occurs.

Lesson 8 - AOF Variables

PV001 8 - 23 Computer Associates

8 - 23

)EOJ *
)PROC
/**/
/* Rule Purpose: Check to see if the batch job that just ended */
/* exceeded any output lines during its run time */
/* by testing to see if the GLVJOBID variable */
/* that would have been set in the $HASP375 */
/* rule exists. Log info if variable is present. */
/* EOJ fires automatically when job terminates. */
/**/
IF OPSVALUE('GLVJOBID.EXCEEDED','E') = 'N' THEN RETURN
JOB = EOJ.JOBNAME
NUMLINES = GLVJOBID.EXCEEDED
MSG = 'OPSAUTO1 BATCH JOB ' JOB' LAST EXCEED ='NUMLINES
LOGIT = OPSSEND('*','B',MSG)

Local Variable Example - Rule 2

Local Variable Example - Rule 2
The above rule logic determines whether the batch job that just ended exceeded
the expected number of output lines. It tests whether the GLVJOBID variable that
would have been set in the $HASP375 rule exists.

Suppose JOB1 and JOB2 start on the system at the same time. JOB1 exceeds
the number of expected output lines, causing the JOB1 address space to produce
a $HASP375 message. This executes Rule 1, which sets a unique
GLVJOBID.EXCEEDED variable for JOB1 only.

Both JOB1 and JOB2 end at the same time, executing Rule 2. While Rule 2 is
processing the EOJ event that was triggered by the end of JOB1, the local
variable GLVJOBID will exist and the rule will generate an informational message
in the OPSLOG. This message indicates the value of the GLVJOBID.EXCEEDED
local variable that was set in Rule 1.

The check against the GLVJOBID.EXCEEDED variable in Rule 2 while
processing the EOJ event that was triggered by the end of JOB2 will not exist,
causing the logic to simply exit the rule.

Lesson 8 - AOF Variables

PV001 8 - 24 Computer Associates

8 - 24

Global Variables

Use these variables to share data
between different rules for events that
occur in any address space

Reserved
Stem

Tail

GLOBALx.XXXX
or GLVTEMPx.XXXX

Global Variables
Global variables allow data to be shared between different rules for
events that occur in any address space. Global variables begin with a
stem of GLOBALx or GLVTEMPx. A stem of GLOBALx causes the
variable to be permanently saved across IPLs or cycles of Unicenter
CA-OPS/MVS. A stem of GLVTEMPx causes the variable to be saved
only while Unicenter CA-OPS/MVS is active.
OPS/REXX global variables allow communication between two or more
rules or between rules and TSO applications.
OPS/REXX global variables used in AOF rules can be accessed from
programs running in OPSOSF servers, batch, TSO, NetView, and UNIX
System Services environments.
Examples of global variable names include GLOBAL.A.B and
GLOBAL.MAIN.
The stem is GLOBALx or GLVTEMPx, up to and including the first
period. The stem is followed by the tail.

Lesson 8 - AOF Variables

PV001 8 - 25 Computer Associates

Global variables have these characteristics:
They are OPS/REXX compound symbols containing any of these
stems:

GLOBAL.
GLOBALx.
GLVTEMPx.

They are not declared. Any use of a variable name containing one of
the valid GLOBAL stems creates a global variable.
They can be modified using ordinary assignment statements.
They trigger global events if their values change.
Note: Changing global variables with stems of GLOBAL0 through
GLOBAL9 does not trigger global variable events.
They have derived names that can be up to 84 bytes in length.
Example: Suppose that an OPS/REXX program has initialized the
simple symbol “I” to 3, and that you have coded this assignment
statement:

GLOBAL.I = 'THIS IS A TEST VALUE'

The global variable that the assignment statement creates is
GLOBAL.3.
The value can be up to 32,000 bytes in length.
Note: Global variables containing up to 76 bytes use much less
storage space than those containing more.
They are case-sensitive (after the stem) when used in an OPSVALUE
function.
Example: The OPSVALUE function recognizes GLOBAL.ABC and
GLOBAL.abc as two different variables.
They are visible from all rule-based and TSO-based OPS/REXX
programs in all address spaces. You can set the value of a global
variable in one rule, and then check or reset the value in another rule or
TSO-based OPS/REXX program.
They do not allow serial access. Use the OPSVALUE function if you
require serialization.
You create global variables within an OPS/REXX program by naming
them in an assignment statement.
Note: In a GLOBALx. or GLVTEMPx. stem, the value of x can be a
single letter (A through Z) or number (0 through 9). If the value of x is a
letter, changing the value of the global variable triggers a global
variable rule. If you do not intend to trigger a rule, use a numeric value
for x; processing will be faster.

Lesson 8 - AOF Variables

PV001 8 - 26 Computer Associates

There are two types of global variables: standard and temporary.
Standard global variables are nonvolatile; they are checkpointed to
data-in-virtual data sets. Temporary global variables are not
checkpointed and they do not exist across IPLs or restarts of Unicenter
CA-OPS/MVS. The stem GLVTEMPx identifies temporary global
variables.
A global variable name is case-sensitive when used in the OPSVALUE
function. For example, Unicenter CA-OPS/MVS treats variables named
GLOBAL.ABC and GLOBAL.abc as two separate variables.
Until you initialize a global variable, its value and name are the same.
For instance, an uninitialized variable named GLOBAL.DOG has the
value “GLOBAL.DOG.”
However, be careful when initializing the stem GLOBAL., because
doing so:

Deletes any global variables that existed before you initialized the
stem.
Assigns the initial stem value to any new global variables created
after the stem was initialized.

Changes to Global Variables
Once you create a global variable, you can modify it using ordinary
assignment statements. To delete the variable, you use the
OPSVALUE built-in function of OPS/REXX.
Changing the value of a global variable triggers a global variable event
unless that variable has a stem of GLOBALx. or GLVTEMPx. (where x
is a number from 0 to 9).

Accessing Global Variables
All OPS/REXX programs, including rules and TSO-based programs,
can access global variables. Therefore, you can set a global variable
value in a rule and then check or reset it in another rule or an
OPS/REXX program.
Access to a global variable is not serialized when an OPS/REXX
instruction references it. Use the OPSVALUE function when
serialization is required.
If a TSO-based OPS/REXX program references a global variable while
Unicenter CA-OPS/MVS is down, a run-time error occurs. (AOF rules
do not run when Unicenter CA-OPS/MVS is inactive.)
To view and/or modify the current values of global variables, use
OPSVIEW option 4.8.

Lesson 8 - AOF Variables

PV001 8 - 27 Computer Associates

8 - 27

)MSG DFHSI1517

)PROC

/**/

/* Rule Purpose: Set a unique OPS/REXX global variable with */

/* the initialization times of all CICS regions. */

/* DFHSI1517 cicsregion Control is being given to CICS. */

/**/

JOB = MSG.JOBNAME /* set JOB to issuer of this message */

CTIME = TIME() /* set CTIME to current time */

/* Create a unique global variable using the JOB value as a stem*/

/* name to make it unique. Set it to the CTIME value */

SET = OPSVALUE('GLVTEMP1.UPTIME.'JOB,'U',CTIME)

Global Variable Example - Rule 1

Global Variable Example
The above rule executes for every DFHSI1517 message that is issued when a
CICS region initiates. An OPS/REXX global variable is created, using the region
name as part of the stem name so that a unique variable exists for each CICS
region (for example, GLVTEMP1.UPTIME.CICSA for region CICSA and
GLVTEMP1.UPTIME.CICSB for region CICSB). The variable is set to the current
system time.

Lesson 8 - AOF Variables

PV001 8 - 28 Computer Associates

8 - 28

)REQ CICSINIT
)PROC
/***/
/* Rule Purpose: Display initialization times of active CICS */
/* regions when requested. Obtain this info */
/* via any GLVTEMP1.UPTIME global variable. */
/* Invoked when a TSO users issues OPSREQ CICINIT */
/***/
ACTREGIONS = OPSVALUE('GLVTEMP1.UPTIME','L')
IF ACTREGIONS = '0' THEN

SAY 'NO INITIALIZED REGIONS'
ELSE DO ACTREGIONS

PULL REGION
UPTIME = OPSVALUE('GLVTEMP1.UPTIME.'REGION,'O')
SAY 'CICSINIT – 'REGION' INIT TIME = 'UPTIME

END
RETURN

Global Variable Example - Rule 2

Global Variable Example
The above rule is a request rule that executes on demand by any TSO user. It
has a different event from Rule 1. This rule can access and display the
GLVTEMP1.UPTIME OPS/REXX variables set by Rule 1. It uses the OPSVALUE
OPS/REXX function to interrogate variable information.

Lesson 8 - AOF Variables

PV001 8 - 29 Computer Associates

8 - 29

GLVEVENT.XXXX

Reserved
Stem

Tail

Temporary Variables

Use these variables when you want to
share data between different rules that are
processing the same event
Automatically deleted
Available only in)PROC section of rule

Temporary Variables
Temporary variables allow data to be shared between different rules
that are processing the same event. They begin with the stem
GLVEVENT. If you allow different groups (for example, operations,
CICS, IMS) to have their own rule sets, you may need to coordinate
some process between two or more rules that execute on the same
event.
The stem is GLVEVENT, up to and including the first period. The stem
is followed by the tail.

Temporary variables have these characteristics:
They are available only in the)PROC section of a rule.
They are unique to rules that execute on the same event.
The name can be up to 78 characters in length, including the
GLVEVENT stem.
The value can be up to 32,000 bytes in length.
They are automatically deleted by Unicenter CA-OPS/MVS when the
last rule that executes on the event completes.

Lesson 8 - AOF Variables

PV001 8 - 30 Computer Associates

8 - 30

)MSG $HASP100

)PROC

/**/

/* Rule Purpose: Set a temporary variable to flag that the */

/* CICSGRP wants to currently request that */

/* $HASP100 messages from CICSx jobs get */

/* suppressed and deleted from SYSLOG */

/* $HASP100 CICSxxx ON INTRDR */

/**/

JOB = WORD(MSG.TEXT,2) /* get 2nd word of message */

IF SUBSTR(JOB,1,4) <> 'CICS' THEN RETURN /* not CICSx */

GLVEVENT.DISP = 'DELETE'

Temporary Variable Example

Rule 1 (within the CICSGRP rule set)

Temporary Variable Example
The above rule sets a temporary variable flag that indicates that CICSGRP has
requested that all $HASP100 messages from CICSx jobs be suppressed and
deleted from the SYSLOG.

Lesson 8 - AOF Variables

PV001 8 - 31 Computer Associates

8 - 31

)MSG $HASP100

)PROC

/**/

/* Rule Purpose: Set a temporary variable to flag that the */

/* IMSGRP wants to currently request that */

/* $HASP100 messages from CICSx jobs get */

/* suppressed. */

/* $HASP100 IMSxxx ON INTRDR */

/**/

JOB = WORD(MSG.TEXT,2) /* get 2nd word of message */

IF SUBSTR(JOB,1,3) <> 'IMS' THEN RETURN /* not IMSx */

GLVEVENT.DISP = 'SUPPRESS'

Temporary Variable Example

Rule 2 (within the IMSGRP rule set)

(continued)

Temporary Variable Example
The above rule sets a temporary variable flag that indicates that IMSGRP has
requested that all $HASP100 messages from CICSx jobs be suppressed.

Lesson 8 - AOF Variables

PV001 8 - 32 Computer Associates

8 - 32

)MSG $HASP*

)PROC

/**/

/* Rule Purpose: Operations makes the final call on message */

/* disposition based on the value of a temporary */

/* variable that different groups can override */

/* at their request. Assume disposition is */

/* is NORMAL if a group hasn’t set the variable */

/**/

IF OPSVALUE('GLVEVENT.DISP','E') = 'N' THEN DISP = 'NORMAL'

ELSE DISP = GLVEVENT.DISP

RETURN DISP

Temporary Variable Example

Rule 3 (within the OPERATNS rule set)

(continued)

Temporary Variable Example
The above rule assumes the disposition of the rule is normal when a group has
not set the variable.

Rule 1 and Rule 2 execute on a specific $HASP100 event and execute before
Rule 3, which has a generic mask of $HASP*. Rule 1 and Rule 2 set the
temporary variable GLVEVENT.DISP accordingly. Rule 3 then interrogates the
GLVEVENT.DISP variable to determine what action it should take.

Lesson 8 - AOF Variables

PV001 8 - 33 Computer Associates

8 - 33

Lesson Summary

You should now be able to:
Describe the different types of variables that
are available within OPS/MVS
Explain how variables are processed within
rules

Lesson 8 - AOF Variables

PV001 8 - 34 Computer Associates

8 - 34

Lesson 8 Assessment

Lesson 8 Assessment
1. All variables have which characteristics?

a. They can contain character strings of up to 256 bytes.
b. They are not used in rules.
c. Derived names of variables can contain up to 50 characters.
d. Their values can change while a program is running.
e. b and d.
f. a, c, and d.

2. Rules can use which type of variable?
a. Global.
b. Static.
c. Local.
d. Event-related.
e. Temporary.
f. All of the above.

Lesson 8 - AOF Variables

PV001 8 - 35 Computer Associates

Lesson 8 Assessment (continued)
3. Global variables have which characteristics?

a. They permit serial access.
b. They have the form GLVTEMPx.XXXX.
c. They have the form GLOBALx.XXXX.
d. They allow data to be shared between different rules for events that

that occur in the same address space.
e. b and c.
f. a, b, and c.
g. b, c, and d.

4. Static variables have which characteristics?
a. They maintain a fixed value across multiple executions of a single

rule.
b. They permit serial access.
c. They are compound symbols.
d. They are available in the)INIT and)PROC sections of a rule.
e. a, b, and c.
f. a and c.
g. None of the above.

5. Event-related variables have which characteristics?
a. They are available in the)PROC and)TERM sections of a rule.
b. They correspond to the rule event types.
c. They are automatically provided by the AOF engine.
d. b only.
e. a, b, and c.
f. b and c.

Lesson 8 - AOF Variables

PV001 8 - 36 Computer Associates

Lesson 8 Assessment (continued)
6. Dynamic variables have which characteristics?

a. Their value can be up to 256 bytes in length.
b. They are simple variables or non-global compound symbols.
c. They are created each time a rule executes.
d. a and c.
e. a, b, and c.
f. b and c.
g. None of the above.

7. Temporary variables have which characteristics?
a. They have the form GLVTEMP.XXXX.
b. They have the form GLVEVENT.XXXX.
c. They allow data to be shared by different rules that are processing the

same event.
d. They are automatically deleted.
e. They are available only in the)PROC section of a rule.
f. a, c, and d.
g. b, c, d, and e.

8. Local variables have which characteristics?
a. They are available only in the)PROC section of a rule.
b. They are unique to the address space that triggered the rule.
c. They have the form GLVJOBID.XXXX.
d. They allow data to be shared between different rules for events that

occur in the same address space.
e. All of the above.

Lesson 9 - OPS/REXX Host Environments

PV001 9 - 1 Computer Associates

ca.com

OPS/REXX
Host Environments

Lesson 9

Lesson 9 - OPS/REXX Host Environments

PV001 9 - 2 Computer Associates

9 - 2

Lesson Objectives

After this lesson, you will be able to:
Describe the OPS/REXX host environments
Recognize how you can use host
environments in rules and OPS/REXX
programs

Lesson 9 - OPS/REXX Host Environments

PV001 9 - 3 Computer Associates

9 - 3

OPS/REXX Host Environments

z/OS

Unicenter CA-OPS/MVS

Automated Operations Facility
(AOF)

Automation
Analyzer EasyRule OPS/REXX OPSLOG

OPSVIEW

OPS/REXX Host Environments
OPS/REXX host environments are special environments that allow you to control
Unicenter CA-OPS/MVS facilities and perform various z/OS tasks. Most host
environments are available from AOF rules and OPS/REXX programs. You
should always use the host environments rather than their equivalent TSO
command processors.

The output that is generated by a host environment depends on the command
and the environment from which it was issued.

A host command is a command that an OPS/REXX program or an AOF rule
sends to a non-REXX environment for execution. You use an “ADDRESS”
instruction in a rule or OPS/REXX program to pass the command to one of the
available host environments. See your documentation for more information about
these commands.

Lesson 9 - OPS/REXX Host Environments

PV001 9 - 4 Computer Associates

9 - 4

Types of Host Environments

ADDRESS AOF

ADDRESS NETMAN

ADDRESS AP

ADDRESS EPI

ADDRESS OPER

ADDRESS OPSCTL

ADDRESS OPSDYNAM

ADDRESS OSF

ADDRESS SQL

ADDRESS TSO

ADDRESS SYSVIEWE

ADDRESS USS

ADDRESS WTO ADDRESS OSFTSP
ADDRESS OSFTSL ADDRESS NETMASTER

Types of Host Environments
ADDRESS AOF

Allows you to programmatically control rules and create dynamic
AOF rules.

ADDRESS AP
Allows Unicenter CA-OPS/MVS to communicate with an MSF-
connected Automation Point system.

ADDRESS EPI
Allows OPS/REXX programs to define and operate virtual terminals
that interact with VTAM applications via the EPI.

ADDRESS NETMAN
Enables you to open, update, or close records in CA-Netman.

ADDRESS OPER
Permits you to issue operator commands (z/OS, JES2, JES3, VM)
from an OPS/REXX program or AOF rule.

Lesson 9 - OPS/REXX Host Environments

PV001 9 - 5 Computer Associates

ADDRESS OPSCTL
Enables you to control Unicenter CA-OPS/MVS COF, ECF, OSF,
and MSF components.

ADDRESS OPSDYNAM
Allows you to issue the ADDRESS OPSDYNAM commands for
dynamic allocation, concatenation, deconcatenation, and
information retrieval functions.

ADDRESS OSF
Dispatches an OPS/REXX program to a CA-OPS/MVS TSO
address space.

ADDRESS SQL
Enables you to create and maintain relational tables.

ADDRESS SYSVIEWE
Allows you to send commands to the Unicenter CA-SYSVIEW.

ADDRESS TSO
Enables you to route commands to TSO.

ADDRESS USS
Allows you to send UNIX or Unicenter TNG Framework API
commands to UNIX System Services servers.

ADDRESS WTO
Enables you to issue system messages in the form of single line
and multi line WTOs and WTORs.

ADDRESS NETMASTER
Create, Update, Replace, Close alerts on Unicenter Netmaster Alert
Monitor screen

ADDRESS OSFTSL
Dispatch a long running OPS/REXX program to a CA-OPS/MVS
TSL server address space.

ADDRESS OSFTSP
Dispatch a priority OPS/REXX program to a CA-OPS/MVS TSP
address space.

Refer to your Unicenter CA-OPS/MVS documentation for specific information
about the host environments. This lesson covers the ADDRESS OPER,
ADDRESS OSF, and ADDRESS WTO environments in detail.

Lesson 9 - OPS/REXX Host Environments

PV001 9 - 6 Computer Associates

9 - 6

ADDRESS OPER

JES2

z/OS

JES3

VM

AOF Rules

OPS/REXX
Programs

Issue Operator
Commands

ADDRESS OPER
The ADDRESS OPER host environment permits you to issue operator commands
from an OPS/REXX program or AOF rule. You may use ADDRESS OPER to issue
these types of operator commands:

JES
Prefix JES2 commands with a dollar sign ($). Prefix JES3 commands
with an asterisk (*).

z/OS (or JES3)
There is a limit to the number of output lines Unicenter CA-OPS/MVS
can capture, but it is so large that truncation is unlikely

VM
To issue VM commands, use an ADDRESS OPER instruction and
prefix the command with the text �#CP�. Unicenter CA-OPS/MVS
issues the command via the standard VM XA/SP Diagnose interface,
which requires a buffer to be passed to it. The response to the VM
command is returned to this buffer, which must be contiguous in real
memory (as seen by z/OS). Because z/OS does not allocate
contiguous real memory, VM command responses are currently
limited to 4 K, the size of a single real storage frame.

Lesson 9 - OPS/REXX Host Environments

PV001 9 - 7 Computer Associates

Use either of the following formats when using the ADDRESS OPER
host command environment. Use format 1 when you do not want to
specify any additional keywords.
Format 1

You may use this format for ADDRESS OPER commands:
ADDRESS OPER “command text"

Format 2
You may also use the following format for ADDRESS OPER
commands:

ADDRESS OPER "keywords"

If you use this format, the COMMAND keyword must precede any
other keywords you specify.
Optional Keywords

COMMAND(text)
CAPTURE(msgtextlist)
CMDECHO(YES|NO)
CMDLOG(YES|NO)
CMDWAIT(seconds)
CONTYPE(ANY|EXTCONS|MIGCONS|SSCONS)
DELAY(seconds)
ID|CONID(consoleid)
IMSID(imsid)
INTERVAL(centiseconds)
LOG(YES|NO|OFF)
MAXCMDOUT(number)
NAME|CONNAME(consolename)
NOCLIST
OUTPUT|NOOUTPUT
STOPEND(YES|NO)
STOPMSG(msgtextlist)
STOPRESP(msgtextlist)
SYSID|SYSTEM(systemids)
SYSWAIT(seconds)
WAIT(seconds)

Lesson 9 - OPS/REXX Host Environments

PV001 9 - 8 Computer Associates

9 - 8

ADDRESS OPER Keywords

Commonly used:
– COMMAND
– CONNAME
– IMSID
– NOOUTPUT
– SYSTEM

For interrogating output:
– CMDWAIT
– INTERVAL
– STOPEND
– STOPMSG
– STOPRESP
– WAIT

ADDRESS OPER
The following keywords are some of the most commonly used keywords in the
ADDRESS OPER environment:

COMMAND
The text of the operator command you wish to issue.

CONNAME
The name of the console that is to receive the command.

IMSID
The name of the IMS control region that is to receive the command.

NOOUTPUT
Requests that no command output be returned.

SYSTEM
The name of the system to which you want to route the command.

Lesson 9 - OPS/REXX Host Environments

PV001 9 - 9 Computer Associates

The following keywords are used to interrogate output in the ADDRESS OPER
environment:

CMDWAIT
Specifies (in seconds) how long the OPSCMD command processor
should wait for command output collection to complete.

INTERVAL
Specifies (in centi-seconds) how long the OPSCMD command
processor waits before testing the response lines to see if the
response has ended.

STOPEND
Determines whether the end line of a multi-line WTO message stops
the OPSCMD command processor from collecting further command
output.

STOPMSG
Specifies a list of one to ten message text segments that terminate
the collection of command response lines. The message segment(s)
you specify do not need to be directed to the console receiving the
command response. STOPMSG and STOPRESP are mutually
exclusive.

STOPRESP
Specifies a list of one to ten message text segments that terminate
the collection of command response lines. The message segment(s)
you specify must be directed to the console receiving the command
response. STOPMSG and STOPRESP are mutually exclusive.

WAIT
Specifies how long the OPSCMD command processor waits,
unconditionally, to receive all output from the current command.

Special Note:
You can only interrogate command responses from commands issued
via the ADDRESS OPER host environment within AOF request (REQ)
and time-of-day (TOD) rules.
Generally, no waiting is allowed in AOF rules (except request and time-
of-day rules); therefore, you cannot collect command responses
because doing so would suspend the address space in which the AOF
is processing. If you need to interrogate the output from a command
(for which no OPS/REXX function exists) for an AOF rule in which no
waiting is allowed, you should trigger an OPS/REXX program to an
OPSOSF server.

Lesson 9 - OPS/REXX Host Environments

PV001 9 - 10 Computer Associates

9 - 10

ADDRESS OPER Examples
Issuing commands - Example 1
ADDRESS OPER

"COMMAND(S CICSASPL) NOOUTPUT"
"COMMAND(S CICSBSPL) NOOUTPUT"
"COMMAND($TI1-10,ABC) NOOUTPUT"

Issuing commands - Example 2
ADDRESS OPER

"COMMAND(F CICSABC,CEMT PERF SHUT)",
"CONNAME(SYSAMSTR) NOOUTPUT"

ADDRESS OPER Examples
Example 1 illustrates issuing a series of z/OS commands.

Example 2 uses ADDRESS OPER keywords (COMMAND, CONNAME) to cause
a command to be issued on behalf of a particular console.

Lesson 9 - OPS/REXX Host Environments

PV001 9 - 11 Computer Associates

9 - 11

ARG NODEID
ADDRESS OPER

"C(D NET,ID="NODEID") CMDWAIT(10)",
"STOPEND(NO) STOPRESP(IST314I)"

DO WHILE QUEUED() > 0
PULL RESPLINE
IF WORD(RESPLINE,1) = 'IST486I' THEN

DO
PARSE VAR RESPLINE 'STATUS=' STATUS ',' .
IF STATUS <> 'ACTIV' THEN CALL RECYCLE

END
END

ADDRESS OPER Examples

Issuing commands and interrogating
output

(continued)

ADDRESS OPER Examples
The above example utilizes ADDRESS OPER keywords (CMDWAIT, STOPEND,
STOPRESP) to issue commands and interrogate output.

Notes:
Except for)TOD and)REQ rules, output cannot be interrogated from
rules.
Warning! Although output can be interrogated with)TOD rules, it is not
recommended to do so.
Output is returned to the external data queue.

Lesson 9 - OPS/REXX Host Environments

PV001 9 - 12 Computer Associates

9 - 12

ADDRESS OSF/OSFTSL/OSFTSP
Dispatch programs to

OSF Servers

OFS
TSO Server

AOF Rules
OPSLOG

SSM
SQL

OPSMAIN

OFS
TSO Server

OFS
TSL Server

OFS
TSP Server

ADDRESS OSF/OSFTSL/OSFTSP
One of Unicenter CA-OPS/MVS’s most powerful features is its ability to process
system events inline or synchronously via the AOF (rules) engine. This type of
real-time automation is extremely effective and is possible because AOF rules
execute in the address space in which an event occurs. Most of your automation
efforts such as issuing WTOs, suppressing messages, querying asids, devices or
initiators, issuing OS/390 or JES2 commands (no command output interrogation
needed), manipulating global variables, manipulating RDF tables, etc, can
therefore be effectively accomplished within AOF rules.
The types of automated logic that you will not be able to perform within rules are
those that require some interaction or any type of wait. These types of interaction
or waiting automation include:

Issuing OS/390, JES2 or JES3, USS, and VM commands (in which no
OPS/REXX function exists) AND interrogation of the command
response is needed.
Issuing WTORs AND interrogating the reply that was given.
Utilizing ISPF services (ADDRESS ISPEXEC)
File I/O manipulation (allocating and reading/writing of files)
Use of the OPSWAIT()
Use of the EPI and SYSVIEWE OPS/REXX Host Environments

Lesson 9 - OPS/REXX Host Environments

PV001 9 - 13 Computer Associates

ADDRESS OSF/OSFTSL/OSFTSP (continued)
These types of automation need to be performed by dispatching an OPS/REXX
program to an OPS/MVS OSF server via the ADDRESS OSF, ADDRESS
OSFTSL, or ADDRESS OSFTSP host environment.
The CA-OPS/MVS OSF servers are separate TSO (IKJEFT01) address spaces
that are started by the CA-OPS/MVS OPSMAIN address space. The servers
allocate the data set (or data sets) that will contain the OPS/REXX programs that
are dispatched. Various OSFx, OSFTSLx, and OSFTSPx, related CA-OPS/MVS
parameters determine the types and the minimum/maximum number of servers to
start, as well parameters that regulate the CPU and time usage of the programs
that execute within them. The type of automation created within each site will
determine the settings of these parameters.
The TSL and TSP servers are also TSO servers, but are assigned special
execution classifications. The TSL servers are servers in which long running
OPS/REXX programs can be dispatched. The TSP servers are servers in which
priority type automated logic can be dispatched to guarantee its immediate
execution.
Most dispatched OPS/REXX programs from AOF rules to servers will be done via
the ADDRESS OSF host environment: (with OSFx parameters defined)

Address OSF
“OI PROGRAM(program)”

An OPS/REXX program that may contain lengthy waiting can be triggered to a
TSL server via the ADDRESS OSFTSL host environment:(with OSFTSLx
parameters defined)

Address OSFTSL
“OI PROGRAM(program)”

An OPS/REXX program that must run immediately (performs some type of
system health check logic) can be dispatched to a priority TSP server via the
ADDRESS OSFTSP host environment:

Address OSFTSP
“OI PROGRAM(program)”

Lesson 9 - OPS/REXX Host Environments

PV001 9 - 14 Computer Associates

9 - 14

Lesson 9 - OPS/REXX Host Environments

PV001 9 - 15 Computer Associates

9 - 15

ADDRESS WTO

WTOs

WTLs

WTORs

AOF Rules

OPS/REXX
Programs

Issue System
Messages

ADDRESS WTO
The ADDRESS WTO host environment enables you to issue system messages in
the form of WTOs, WTLs, or WTORs. Using this host environment, you can:

Issue a WTO message synchronously in AOF rules, causing the WTO
to be sent when the rule executes. When you send a WTO message by
using the OPSWTO command processor in a rule, the OPSWTO
command goes to an OSF server. This can cause a slight delay
between the rule executing and the WTO being issued.
Issue multiline WTO messages. The ADDRESS WTO host
environment uses REXX stem variables to store individual lines of the
message.

To issue a single-line WTO message:
ADDRESS WTO "TEXT('messagetext') keywords”

Lesson 9 - OPS/REXX Host Environments

PV001 9 - 16 Computer Associates

Optional Keywords:
AREAID(areaid)
CNID(consoleids)
CNNAME(consolenames)
DELAY(delaytime)
DESC(desccode)
HILITE|LOWLITE
MCSFLAGS(flagvalues)
MSGID(messageid)
OPTION(value)
REPLY
ROUTE(routecode)
SUBSYS(ssid)
SYSTEM(ALL|EXT|sysnames)
SYSWAIT(seconds)
TOKEN(dom token)
WAIT(waittime)
WTOID(wtoid)

Note: Specifying a wtoid value for the WTOID keyword is optional.

To issue a multiline WTO message:
ADDRESS WTO "TEXTVAR(stem-name) keywords”

Keywords
(same as previous format)

For detailed information about these keywords, see your Unicenter CA-OPS/MVS
documentation. This lesson focuses on the most commonly used keywords.

Lesson 9 - OPS/REXX Host Environments

PV001 9 - 17 Computer Associates

9 - 17

ADDRESS WTO

Commonly used keywords:
– CNNAME
– DESC
– MSGID
– REPLY
– ROUTE
– SYSTEM
– TEXT
– TEXTVAR

(continued)

ADDRESS WTO
The following keywords are some of the most commonly used keywords in the
ADDRESS WTO environment:

CNNAME
The name(s) of the console(s) that are to receive the WTO or
WTOR message. (You can specify up to 16 alphanumeric names
containing up to eight characters each.)

DESC
The message descriptor codes for the current message.

MSGID
The message ID that prefixes the WTO text.

REPLY
The reply for the message.

ROUTE
The route codes for the message.

Lesson 9 - OPS/REXX Host Environments

PV001 9 - 18 Computer Associates

SYSTEM
The name of the system that is to receive the WTO message.

TEXT
The text of a single-line WTO message.

TEXTVAR
The text of a multi-line WTO message.

Lesson 9 - OPS/REXX Host Environments

PV001 9 - 19 Computer Associates

9 - 19

ADDRESS WTO Examples

Single-line WTO - Example 1
ADDRESS WTO
"MSGID(OPSAUTO1) TEXT('PHASE1 ",
"OF CICSA SHUTDOWN')"

Single-line WTO - Example 2
ADDRESS WTO
"MSGID(OPSAUTO2) TEXT('CICSA ",
"ENDED AT "TIME()"') ",
"DESC(2) ROUTE(5)"

ADDRESS WTO Examples
Example 1 issues the “OPSAUTO1 PHASE1 OF CICSA SHUTDOWN” message
to the system.

Example 2 issues the highlighted “OPSAUTO2 CICSA ENDED AT TIME()”
message to the system.

Note: If ROUTE() is omitted, the WTODEFAULTROUTE parameter or the
DEFAULT statement of the CONSOLxx member sets the route code.

Lesson 9 - OPS/REXX Host Environments

PV001 9 - 20 Computer Associates

9 - 20

LINE.1 = 'SELECT SYSTEM SHUTDOWN OPTIONS'
LINE.2 = 'FROM THE FOLLOWING LIST:'
LINE.3 = '1 - NORMAL 2 - FORCE 3 - PARTIAL'
ADDRESS WTO

"MSGID(OPSAUTO3) TEXTVAR(LINE.) ",

"CNNAME(SYSAMSTR)"

ADDRESS WTO Examples

Multi-line WTO

(continued)

Lesson 9 - OPS/REXX Host Environments

PV001 9 - 21 Computer Associates

9 - 21

ADDRESS WTO

"MSGID(OPSAUTO3) TEXT('REPLY WITH VALID OPTION')",

"REPLY WAIT(360) CNNAME(SYSAMSTR)"

PULL REPLYTXT

REPLY = WORD(REPLYTXT,2)

SELECT

WHEN REPLY = 1 THEN CALL NORMAL

WHEN REPLY = 2 THEN CALL FORCE

WHEN REPLY = 3 THEN CALL PARTIAL

OTHERWISE CALL NOOPTION

END

ADDRESS WTO Examples

WTOR

(continued)

Lesson 9 - OPS/REXX Host Environments

PV001 9 - 22 Computer Associates

9 - 22

Lesson Summary

You should now be able to:
Describe the OPS/REXX host environments
Recognize how you can use host
environments in rules and OPS/REXX
programs

Lesson 9 - OPS/REXX Host Environments

PV001 9 - 23 Computer Associates

9 - 23

Lesson 9 Assessment

Lesson 9 - OPS/REXX Host Environments

PV001 9 - 24 Computer Associates

Lesson 9 Assessment
Write the appropriate letter next to each description below.

a. ADDRESS USS
b. ADDRESS AOF
c. ADDRESS NETMAN
d. ADDRESS RDF
e. ADDRESS REXX
f. ADDRESS SYSVIEWE
g. ADDRESS OPSCTL
h. ADDRESS WTO
i. ADDRESS MSF
j. ADDRESS OPSDYNAM
k. ADDRESS OPER
l. ADDRESS TSO
m. ADDRESS EPI
n. ADDRESS SQL
o. ADDRESS SYSVIEW
p. ADDRESS OSF
q. ADDRESS OSFTSL
r. ADDRESS OSFTSP

Issue system messages as WTOs and WTORs.
Control Unicenter CA-OPS/MVS components.
Route commands to TSO.
Issue commands for dynamic allocation,
concatenation, deconcatenation, and
information retrieval functions.
Issue operator commands from an OPS/REXX
program or AOF rule.
Send UNIX commands to servers.
Create and maintain relational tables.
Programmatically control rules and create
dynamic AOF rules.
Route commands to dispatch an OPS/REXX
program to a server.
Programmatically control VTAM applications.
Dispatch an OPS/REXX program to a specially
classified long running server.
Dispatch an OPS/REXX program to a specially
classified priority server.

Lesson 10 - OPS/REXX Built-in Functions

PV001 10 - 1 Computer Associates

ca.com

OPS/REXX
Built-in Functions

Lesson 10

Lesson 10 - OPS/REXX Built-in Functions

PV001 10 - 2 Computer Associates

10 - 2

Lesson Objectives

After this lesson, you will be able to:
Describe the basic syntax requirements of
OPS/REXX functions
Demonstrate how to use OPS/REXX
functions

Lesson 10 - OPS/REXX Built-in Functions

PV001 10 - 3 Computer Associates

10 - 3

OPS/REXX Functions

z/OS

Unicenter CA-OPS/MVS

Automated Operations Facility
(AOF)

Automation
Analyzer EasyRule OPS/REXX OPSLOG

OPSVIEW

OPS/REXX Functions
Built-in functions are an integral component of OPS/REXX that give
AOF rules access to a wide variety of system data that is necessary to
take programmatic actions and, in some cases, perform specific system
tasks.
OPS/REXX functions can retrieve such system information as job
status, device status, and JES2-related resource data. They also allow
you to perform tasks like low-lighting messages or performing
Automation Restart Management (ARM) services.

Lesson 10 - OPS/REXX Built-in Functions

PV001 10 - 4 Computer Associates

A Note About REXX Built-in Functions
REXX’s comprehensive set of built-in functions is one of its significant
attractions. OPS/REXX supports all standard REXX functions as
defined by the second edition of The REXX Language: A Practical
Approach to Programming by M.F. Cowlishaw, plus functions
specifically added for Unicenter CA-OPS/MVS.
Built-in functions operate under OPS/REXX exactly as they do under
standard REXX, except for the differences described in your Unicenter
CA-OPS/MVS documentation.
For information about standard REXX functions, refer to the second
edition of the Cowlishaw book, which you can order from Prentice-Hall.

Functions Not Supported in OPS/REXX
CHARIN
CHAROUT
CHARS
LINEIN
LINEOUT
LINES
The S (Scan) option of the TRACE function

Lesson 10 - OPS/REXX Built-in Functions

PV001 10 - 5 Computer Associates

10 - 5

Types of Functions

Refer to your Student Guide for a
comprehensive list
Commonly used functions:
– OPSDEV
– OPSINFO
– OPSTATUS
– OPSVALUE

Available Functions
OPSARM

Issue requests for z/OS automatic restart management (ARM)
services from AOF rules on behalf of the current address space.

OPSAUTO
Query and change the auto-enable status of rule members before
z/OS is active.

OPSBITS
Return a character string whose internal binary representation is all
binary zeros except that the bits its arguments specify are on.

OPSBN
Return information about certain keywords that appear in translated
CA-AutoMate/MVS rules

OPSCA7
Issue CA-7 commands from within your OPS/REXX programs. The
OPSCA7 function cannot be used in rules.

Lesson 10 - OPS/REXX Built-in Functions

PV001 10 - 6 Computer Associates

OPSCAWTO
Send a message to the Unicenter TNG Event Manager in the form
of an SNMP trap.

OPSCLEDQ
Clear the external data queue.

OPSCOLOR
Change the color of the messages in the OPSLOG Browse display.

OPSCPF
Obtain information about the z/OS Command prefix Facility (CPF).

OPSDEV
Obtain device information synchronously.

OPSDELV
Delete global variables whose names match a name mask that you
specify and return a count of the deleted variables.

OPSDOM
Delete operator messages.

OPSDUMP
Tell Unicenter CA-OPS/MVS to take an SVC dump of the current
address space. You can use OPSDUMP only in AOF rules.

OPSECURE
Return information about the eTrust CA-ACF2, RACF, and eTrust
CA-Top Secret security packages.

OPSENQ
Interact with z/OS ENQ/DEQ services to serialize use of resources.

OPSGETV
Retrieve the value of a global variable that you specify.

OPSGETVL
Retrieve the names of global variables that match a variable name
mask that you specify.

OPSHFI
Read and write variables to a shared VSAM file.

OPSINFO
Obtain information about Unicenter CA-MVS and/or the environment
where the issuing OPS/REXX program is running.

Lesson 10 - OPS/REXX Built-in Functions

PV001 10 - 7 Computer Associates

OPSIPL
Obtain various information about the IPL parameter library.

OPSJES2
Obtain JES2-related resource data.

OPSLOG
Extract messages from the OPSLOG.

OPSPRM
Control Unicenter CA-OPS/MVS parameters.

OPSPRMLB
Access the z/OS Logical Parmlib Concatenation facility.

OPSSEND
Send a message from one copy of Unicenter CA-OPS/MVS to
another copy and specify how the receiving copy processes the
message. You can also send a message to the OPSLOG of the
current copy.

OPSSETV
Create a global variable or update the value of a global variable.

OPSSMF
Create SMF records.

OPSSMTBL
Maintain the directory table that System State Manager uses to
manage tables that contain information about system resources.

OPSSRM
Obtain information about the z/OS System Resource Manager
(SRM).

OPSTATUS
Obtain information about the address spaces that are currently in
the system. Optionally, you can also write one or more records to
the external data queue.

OPSTORE
Obtain information about the virtual storage of a specified address.

OPSUBMIT
Submit a batch job.

OPSVALUE
Manipulate variables.

Lesson 10 - OPS/REXX Built-in Functions

PV001 10 - 8 Computer Associates

OPSVSAM
Read and write VSAM files.

OPSYSPLX
Return information about a system in the current sysplex.

OPSYSSYM
Obtain information about z/OS system symbols.

OPSWAIT
Suspend the processing of an OPS/REXX program or a REQ rule
for a specified period of time.

OPSWORD
Provide compatibility for translated CA-AutoMate/MVS rules that
contain the &WORDnn and &MLWORDnn environmental variables.

OPSWLM
Retrieve information or set the state of a WLM scheduling
environment.

Refer to your Unicenter CA-OPS/MVS documentation for specific information
about OPS/REXX functions. This lesson covers the OPSDEV, OPSINFO,
OPSTATUS, and OPSVALUE functions in detail.

Lesson 10 - OPS/REXX Built-in Functions

PV001 10 - 9 Computer Associates

10 - 9

OPLines = OPSDEV('D','TAPE')
say "There are" OPLines,

"online tape devices"
do OPLines

pull edqline
say edqline

end

OPSDEV

Allows you to obtain device information
synchronously
Can be used in AOF rules
Example:

OPSDEV
This function obtains device information synchronously. Therefore, you can use it
in AOF rules. It has the following format:

var = OPSDEV(function,qualifier[,status])

The function argument describes the type of information retrieval that OPSDEV
does. Possible values are:

U - Extract device information by UCB. The qualifier is a four-character
device number. You can use the % and/or * characters as wildcards.
For example, the REXX statement below returns information about all
online devices whose device numbers contain “123” in the first three
positions:

Devices=OPSDEV('U','123*')

Lesson 10 - OPS/REXX Built-in Functions

PV001 10 - 10 Computer Associates

V - Extract information by VOLSER. The qualifier is a six-character
volume serial. You can use the % as a single character wildcard and
the * symbol only as a suffix wildcard. For example, the REXX
statement below returns information about all online DASD volumes
whose volume serial begin with an S and whose third through fifth
characters are RES:

Devices=OPSDEV('V','S%RES*')

Only DASD devices are searched for matching volume serials.
D - Extract information about devices in general. The qualifier
determines the type of device to return information about. The values
can be:

DASD
TAPE
UREC (unit record devices)
COMM (communications devices)
CTC (channel-to-channel adapters)
TERM (terminals)
(all devices)

For example, the REXX statement below returns information about all
online channel-to-channel adapters:

Devices=OPSDEV('D','CTC')

The qualifier specifies the devices for which information is returned.

The status value determines whether both online and offline or only online
devices are to be considered. Possible values for status are:

O - Only information on online devices is returned. (Default.)
A - Information is returned on both online and offline devices.

Lesson 10 - OPS/REXX Built-in Functions

PV001 10 - 11 Computer Associates

10 - 11

Count of SYS* volumes = 2
02BC SYSRES ONLINE DASD 3380 PRIVATE ...
02BE SYSTST ONLINE DASD 3380 PRIVATE ...

say "Count of SYS* volumes =",
OPSDEV("V","SYS*")

do while QUEUED() > 0
pull data
say data

end

OPSDEV Output

Sample statement:

Output:

Lesson 10 - OPS/REXX Built-in Functions

PV001 10 - 12 Computer Associates

10 - 12

OPSINFO

Returns information about Unicenter
CA-OPS/MVS or the environment
where issuing OPS/REXX program is
running

OPSINFO
The OPSINFO function returns information about Unicenter CA-OPS/MVS and/or
the environment where the issuing OPS/REXX program is running. It has the
following format:

var = OPSINFO(string)

The following lists some of the more useful OPSINFO functions. For a complete
list, see the documentation.

var = OPSINFO('ACCOUNT')
ACCOUNT information for the current address space. Multiple
accounting fields are returned separated by blanks.

var = OPSINFO('ASID')
The z/OS address space identifier (ASID) number of the address
space in which the Unicenter CA-OPS/MVS program issuing this
function call is running. The value returned is two characters whose
binary value is the ASID. If the OPS/REXX program is a message
rule, OPS/REXX returns the ASID of the issuer of the WTO that
triggered the rule.

Lesson 10 - OPS/REXX Built-in Functions

PV001 10 - 13 Computer Associates

var = OPSINFO('CPUID')
The six-character CPU identifier or the CPU where the OPS/REXX
program or rule is running.

var = OPSINFO('CPUTYPE')
The four-character CPU type (for instance, 3090) of the CPU where
the OPS/REXX program or rule is running.

var = OPSINFO('CPUMODEL')
The two-character CPU sub-model code of the CPU where the
OPS/REXX program or rule is running. When running under VM this
function returns the value FF.

var = OPSINFO('DFPVERSION')
The level of DFP running on the system where the OPSINFO
function call was executed in the form version.release.modification
level (for example, 3.2.0).

var = OPSINFO('EXECPGM')
The name of the program specified on the EXEC PGM=progname
JCL statement for the current step.

var = OPSINFO('EVENTTYPE')
The type of event the rule is processing, such as MSG or DOM.
This function is intended for use in external OPS/REXX functions
that may be called by more than one kind of rule.
When you use this function outside the rule environment (for
example, in an OPS/REXX program in a server), it always returns
the string “NONE.”

var = OPSINFO('EXITTYPE')
The name of the exit in which the AOF captured the event that
triggered this rule. This function returns one of these values:

ARM DSN NIP
CA7 ERR NONE
CICS IMS OMG
CNSV JES3 TRAC
CPM MVS

A common use of OPSINFO('EXITTYPE') is to prevent processing a
single message more than once in the IMS or JES3 environments.

Lesson 10 - OPS/REXX Built-in Functions

PV001 10 - 14 Computer Associates

var = OPSINFO('IMSID')
The IMS identifier (IMSID) associated with the address space where
the OPS/REXX program is running. “NONE” is returned if the
address space is not an IMS Control Region, a DLISAS Region, a
DBRC address space, a Message Processing Region, or a Batch
Message Processing Region.
IMSID is of greatest interest to AOF message rules. For example,
canceling an IMS BMP is dangerous because doing so can bring
down all of IMS. A rule can use the OPSINFO function to:

Determine whether the job issuing an z/OS message that
usually calls for cancellation is an IMS-dependent region .
Take some other action for these regions.

Note: This function is available only if the IOF is licensed, installed,
and active at your site. If the IOF is not installed or is inactive, this
function always returns the string “NONE.”

var = OPSINFO('IPLDATE')
The date when z/OS was last IPLed (for example, 20030428 for
April 28, 2003), in standard OPS/REXX date format S.

var = OPSINFO('IPLDEVICE')
The device number of the DASD volume from which the last IPL
was performed (for example, 9C01). This device number can have
four hexadecimal digits.

var = OPSINFO('IPLTIME')
The time when z/OS was last IPLed (for example, 13:30:10 for 1:30
p.m. plus 10 seconds), in standard OPS/REXX time format N.

var = OPSINFO('IPLTYPE')
A value representing how the system was last IPLed. This value is
one of the following:

CLPA - The system was IPLed using the CLPA option
CVIO - The system was IPLed using the CVIO option
WARM - The system was warm-started (IPLed without a
complete shutdown)

var = OPSINFO('IPLVOLSER')
The volume serial of the DASD volume from which the last IPL was
performed (for example, SYSRES).

Lesson 10 - OPS/REXX Built-in Functions

PV001 10 - 15 Computer Associates

var = OPSINFO('JES')
The name of the primary job entry subsystem. Typically, this value
is either JES2 or JES3, but it can be any subsystem name that you
have assigned to the primary JES (JES5, JES9, and so on).
Contrast with the description of OPSINFO('JESTYPE').

var = OPSINFO('JES3GBLNAME')
One of these values:

The JES3 global processor name if JES3 is the primary job
entry subsystem.
NULL if JES3 is not the primary job entry subsystem or JES3
is not active in the system.

var = OPSINFO('JESTYPE')
A value that indicates whether the primary JES subsystem is a
JES2 or JES3 subsystem. The returned value is always either JES2
or JES3, regardless of the actual subsystem name. For example, if
the primary JES is called JES9 but it is a JES2 subsystem, the
following values are returned:

OPSINFO(‘JES’) = ‘JES9’

OPSINFO(‘JESTYPE’) = ‘JES2’

Note: The value returned by OPSINFO(‘JESTYPE’) may not be
valid when the primary JES is not active in the system (for example,
immediately following an IPL).

var = OPSINFO('JOBNAME')
The JOBNAME associated with the address space where the
OPS/REXX program is running. For a message rule being
processed in the z/OS SS09 exit, OPS/REXX returns the job name
of the issuer of the WTO that triggered the rule. This means that for
a reissued message that originated on another system the job name
is the one that actually issued the WTO on the originating system.

var = OPSINFO(‘LOCMSTCONSNM’)
The first console name that has master authority on the local
system. If there is no console that has master authority on the local
system, the function returns the name of the sysplex master
console. When a “no consoles” condition exists in the system, this
function returns a null string.
The OPSINFO(‘LOCMSTCONSNM’) function applies only to
systems running MVS/ESA 4.1.0 or higher.

Lesson 10 - OPS/REXX Built-in Functions

PV001 10 - 16 Computer Associates

var = OPSINFO('LPARNAME')
The LPAR name of the processor configuration. Returns a null
string if not in LPAR mode or if used on any OS/390 version below
5.2.2.

var = OPSINFO('MAINPRM')
The character string that was passed to Unicenter CA-OPS/MVS
from the PARM field on its EXEC card when it was started. This
string can contain up to 100 characters.

var = OPSINFO('MODULE')
The name of the module that triggered the AOF event. For example,
in a message rule it returns the name of the module (program) that
issued the WTO. When used in an OPS/REXX program running in a
TSO address space or in a server it returns the name of an
Unicenter CA-OPS/MVS module.

var = OPSINFO('MSFID')
The local MSF ID of the current copy of Unicenter CA-OPS/MVS. If
the MSF is not installed or has not been started, a blank value is
returned.

var = OPSINFO('MSTCONSNM')
The name of the current MCS master console. This data is available
only if you have MVS/SP 4.1.0 or a higher level of z/OS on your
system. When invoked under older releases of MVS, this function
returns a null value. When a “no consoles” condition exists in the
system, this function returns a null string.

var = OPSINFO('MVSVERSION')
The level of z/OS on which the OPSINFO function call was
executed in the form version.release.modification level.

var = OPSINFO('PRODUCTSTARTS')
The number of times that the current Unicenter CA-OPS/MVS
subsystem has been started since the last IPL of z/OS, or 0 if the
subsystem has not been started since the last IPL.
When used in an OPS/REXX program, this function returns a valid
value even if Unicenter CA-OPS/MVS subsystem is inactive.
Note: The only time that you can absolutely infer that Unicenter
CA-OPS/MVS is down from this function is if it returns 0. If it returns
any other value, it could be either up or down. To determine whether
a particular product subsystem is active, check if the RC value set
by this command is 0:

ADDRESS AOF "SUBSYS ssid"

Lesson 10 - OPS/REXX Built-in Functions

PV001 10 - 17 Computer Associates

var = OPSINFO('PRODUCTSTATUS')
One of the following values:

INIT - Unicenter CA-OPS/MVS is initializing.
ACTIVE - Unicenter CA-OPS/MVS is active and processing
system events.
TERM - Unicenter CA-OPS/MVS is terminating .

Only rules can invoke this function. It returns a null string when a
REXX program tries to invoke it. Typically, you might use this
function:

In the initialization section of a rule, to determine whether this
is Unicenter CA-OPS/MVS initial start-up.
In the termination section of a rule, to determine whether
Unicenter CA-OPS/MVS is terminating.

var = OPSINFO('PROGRAM')
In any environment other than a rule running under the AOF,
OPSINFO('PROGRAM') returns the name of the member from
which OPS/REXX read the REXX program. (If the OPS/REXX
program was run from a sequential data set, which is rare, then
OPSINFO('PROGRAM') returns a null string.) In the AOF
environment, OPSINFO('PROGRAM') returns ruleset.rule.

var = OPSINFO('PROGRAMMER')
The programmer information associated with the current address
space. In the AOF environment (except when running in a server)
the information returned is for the address space that triggered the
AOF event.

var = OPSINFO('SMFID')
The SMF identifier that your site has assigned to the z/OS image on
which Unicenter CA-OPS/MVS is running. z/OS gets this value at
IPL time from SYS1.PARMLIB(SMFPRMnn).

var = OPSINFO('STATEMANSTATUS')
The current status of the System State Manager task. Possible
values are:

ACTIVE - System State Manager is active.
INACTIVE - System State Manager is not active.
NONE - System State Manager is not being used.
PASSIVE - System State Manager is active but is not
monitoring resources.
NOT-AVAILABLE - The OPS/MVS product is not active.

Lesson 10 - OPS/REXX Built-in Functions

PV001 10 - 18 Computer Associates

var = OPSINFO('STEPNAME')
The step name or alternate task ID of the current address space.
For example, if you issue the command S CICS.CICSA, the step
name for that address space is CICSA.

var = OPSINFO('SUBSYS')
The four-character z/OS subsystem name that Unicenter
CA-OPS/MVS is using. This value from the first four characters of
the PARM field on the EXEC statement in the JCL procedure used
for Unicenter CA-OPS/MVS. Default subsystem name is OPSS.

var = OPSINFO('SYSPLEX')
The z/OS sysplex name from SYS1.PARMLIB(COUPLExx) or
SYS1.PARMLIB(LOADxx). Returns a null string if used on any
OS/390 version below 4.1.0.

var = OPSINFO('TSOEVERSION')
The TSO/E release level in the form v.rr.m (for example, 2.05.0). If
TSO/E is not installed, this function returns the value N/A.

var = OPSINFO('USSPID')
The UNIX System Services process ID number (PID), in decimal
format, for the current z/OS task. The primary use of this function it
to capture the PID from long-running USS processes that issue
messages resulting in AOF message events. Possible values are:

Nnnnnnnnnn - Process ID number of current z/OS task.
Important! This number is not the same as the PID of the parent
process when UNIX services fork or spawn are used to issue a
message. These UNIX services may generate a short-term process
resulting in a message that triggers an AOF message event.

N/A - No process ID exists for the current task.
Note: To return the process ID number, you must have at least
OS/390 version 1, release 2 or higher.

var = OPSINFO('VERSION')
An eight-byte string that provides the version, release, and
modification level of Unicenter CA-OPS/MVS. The format of this
string is vv.rr.mm where vv is the version number, rr is the major
release number, and mm is the modification level number within that
release number. Each time CA makes a new “level set”
maintenance tape available, the modification level within the product
version string changes. For example, the third maintenance tape
that CA issues for Unicenter CA-OPS/MVS 04.02.00 might have a
version string of “04.02.03.”

Lesson 10 - OPS/REXX Built-in Functions

PV001 10 - 19 Computer Associates

Thus, when using the OPSINFO('VERSION') function to differentiate
between code that may run on multiple versions of Unicenter
CA-OPS/MVS, take into account that the modification level changes
with each maintenance tape.
For example, to check for code that can run only with version 3.2,
use this function:

if SUBSTR(OPSINFO("VERSION"),1,6)=="03.02."
then ...

To check for code that can run with version 3.2 or higher levels, use
this function:

if SUBSTR(OPSINFO("VERSION"),1,6)>="03.02."
then ...

Lesson 10 - OPS/REXX Built-in Functions

PV001 10 - 20 Computer Associates

10 - 20

OPSINFO Example
)REQ SYSINFO
/* OPS/MVS REQ RULE TO DISPLAY SPECIFIC */
/* SYSTEM-RELATED DATA */
/* TSO USER ISSUES: */
/* TSO OPSREQ SYSINFO */
/* TO INVOKE RULE */
/* USE SAY INSTRUCTION TO DIRECT MESSAGE BACK */
/* TSO USER */
)PROC
/* IPLDATE: */
SAY 'THE IPLDATE IS' OPSINFO('IPLDATE')

/* IPLTIME: */
SAY 'THE IPLTIME IS' OPSINFO('IPLTIME')

/* IPLVOLSER: */
SAY 'THE IPLVOLSER IS' OPSINFO('IPLVOLSER')

/* MSTCONSNM: */
SAY 'THE MASTER IS' OPSINFO('MSTCONSNM')

/* CPUID: */
SAY 'THE CPUID IS' OPSINFO('CPUID')

Lesson 10 - OPS/REXX Built-in Functions

PV001 10 - 21 Computer Associates

10 - 21

OPSTATUS

Allows you to obtain information about
active address spaces
Optionally, enables you to write records
to external data queue
Useful for retrieving:
– Names of tasks that are active or have

outstanding replies
– IMS IDs of active systems

OPSTATUS
The OPSTATUS function returns a count of the address spaces currently in the
system or in the “*LOGON*” state, WTORs, or IMS systems that are currently in
the system and that match the selection criteria. OPSTATUS also optionally
writes one or more records to the external data queue.

OPSTATUS is especially useful for retrieving either the names of tasks that are
active or have outstanding replies, or the IMS IDs of active IMS systems.

Note: Using the OPSTATUS function to count the number of batch jobs from a
$HASP message rule may not provide you with accurate results. The message
may be issued on behalf of a batch job before the OPSTATUS function counts it
or after OPSTATUS counts it. Batch jobs may show up as active before the
program is executing, or after the program has finished executing but before JES
has finished handling work on its behalf.

The OPSTATUS function has this format:
var = OPSTATUS(func, subfunc, entity)

Lesson 10 - OPS/REXX Built-in Functions

PV001 10 - 22 Computer Associates

The func argument specifies the type of entity whose status is to be queried; it
has one of these values:

A - Address spaces.
I - IMS systems.
J - Batch jobs.
P - Attached APPC transactions (ATX).
R - Outstanding replies (WTORs).
S - Started tasks and system address spaces.
T - TSO users.

The subfunc argument specifies one of these information types:
A - Return the count only.
L - Return the count and add a WTOR or IMS record to the external
data queue for each WTOR or IMS system found. A subfunc of L is
meaningful only for func values of R (WTORs) and I (IMS systems).
I - Return the count and do the following:

For func values of A, J, P, S, or T, add an ASID record to the
external data queue for each address space found.
For a func value of I, add an IMS record (followed by an ASID
record) to the external data queue for each IMS system found. The
ASID record identifies the IMS system.
For the func value R, add a WTOR record (followed by an ASID
record) to the external data queue for each WTOR found. The ASID
record identifies the issuer of the WTOR.

W - Returns an external data queue record for each ASID, JOB, STC,
or TSO address that matches the selection criteria.

The entity argument restricts the returned information to only those entities with
names matching the value of entity. Entity can be:

An asterisk to indicate all entities of a given type. (Be sure to use this
when searching for IDs currently in the *LOGON* state.)
A string of characters ending with an asterisk to return information
about only the entities with names that begin with the specified string.
A string of characters with no asterisk to return information about only
entities with names that exactly match the string.

For all function codes except I, the entity name refers to the jobname/TSO
ID/taskname of each address space. For function code I, entity names refer to the
four-character IMS ID of each IMS system.

Lesson 10 - OPS/REXX Built-in Functions

PV001 10 - 23 Computer Associates

10 - 23

Count of address spaces: 12
MASTER NONE NONE 0001 NSW SYS(more columns here)...
PCAUTH PCAUTH NONE 0002 NSW SYS
TRACE TRACE NONE 0003 NSW SYS
GRS GRS NONE 0004 NSW SYS
DUMPSRV DUMPSRV DUMPSRV 0005 OWT SYS
CONSOLE CONSOLE NONE 0006 NSW SYS
ALLOCAS ALLOCAS NONE 0006 NSW SYS
SMF SMF IEFPROC 0007 NSW SYS
ACF2 ACF2 IEFPROC 0008 NSW STC
NIT STEP2 NONE 0011 OWT INI
BATJOB1 STEP2 NONE 0012 NSW JOB
TSOID1 NONE NONE 0009 OWT TSU

say 'Count of address spaces:' OPSTATUS('A','I','*')
do while queued() > 0

pull x
say x

end

OPSTATUS Output

Sample statement:

Output:

Lesson 10 - OPS/REXX Built-in Functions

PV001 10 - 24 Computer Associates

10 - 24

userid = "TSOUSER" /* Replace TSOUSER with */

/* a valid TSO user ID */

if OPSTATUS("T","A",userid) <> 1 then

say userid "is not logged on at this time."

jobname = "CICSPROD"

status = OPSTATUS("A","A",jobname)

if status=1 then TASKSTAT = "UP"

OPSTATUS Examples

Example 1

Example 2

Lesson 10 - OPS/REXX Built-in Functions

PV001 10 - 25 Computer Associates

10 - 25

GETWTOR=OPSTATUS('R','L','QAH02HXT')

PULL RECORD

REPLYID = WORD(RECORD,1)

ADDRESS OPER

"COMMAND(R "REPLYID",SHUTDOWN) NOOUTPUT"

OPSTATUS Examples

Example 3

(continued)

Lesson 10 - OPS/REXX Built-in Functions

PV001 10 - 26 Computer Associates

10 - 26

OPSVALUE

Allows you to manipulate variables
Lets you use compound symbols in
ways which are not possible in standard
OPS/REXX

OPSVALUE
Using the OPSVALUE function, you can manipulate compound symbols in ways
which are not possible in standard OPS/REXX. For example, the OPSVALUE
function lets you use compound symbols, especially global compound symbols,
as a kind of database. It has the following format:
var = OPSVALUE(derivedname[,[actioncode][,[newvalue][,oldvalue]]])

Limits for Global Variable Stems
You should not create too many global variables under a single global
variable stem. If you do, you will no longer be able to view the global
variables under OPSVIEW option 4.8 or access them using the
OPSVALUE function.
The absolute product limit is 32,768 variables under a single global
variable stem. However, in practice, CA strongly recommends that no
more than 10,000 global variables exist at any given instant under a
single global variable stem.
Note: There is a restriction in viewing too many variables when going
cross-system. Trying to access several hundred variables may cause a
time-out on the MSF link.

Lesson 10 - OPS/REXX Built-in Functions

PV001 10 - 27 Computer Associates

OPSVALUE Arguments
The argument derivedname gives the name of the symbol to be acted
on. When you use this argument without quotation marks, simple
symbols (which are case-sensitive) following the stem are replaced by
their values. Although the derived name may be as long as 84 bytes,
global variable rules can process only the first 50 bytes of the name.
Therefore, you may want to limit the length of global variable names to
50 bytes.
The actioncode specifies the action to be taken on that symbol. The
newvalue argument supplies the new value (if any) to assign to the
symbol, and oldvalue fetches the value of the symbol before the
actioncode action takes place.

OPSVALUE and Cross-system Operations
To use the OPSVALUE function for cross-system operations, change
the default system name by using the following command:

ADDRESS OPSCTL "MSF DEFAULT SYSTEM(sysname)"

Any subsequent OPSVALUE function is routed to the sysname system.
You must specify an individual system name on the ADDRESS
OPSCTL MSF DEFAULT host command that is associated with the
OPSVALUE function. Values of ALL and EXT are invalid when used
with OPSVALUE.
To return to the local system, use this command:

ADDRESS OPSCTL "MSF DEFAULT SYSTEM(*)"

For more information about the ADDRESS OPSCTL MSF DEFAULT
command, see your Unicenter CA-OPS/MVS documentation.

Lesson 10 - OPS/REXX Built-in Functions

PV001 10 - 28 Computer Associates

Actions OPSVALUE Takes
OPSVALUE returns a value from the function call, and, in the case of
some action codes, also places information in the external data queue.
You can specify the actioncode values shown below. If you omit the
actioncode, OPS/REXX uses the code V by default.

6 (Delete single variable)
Removes the node specified by the derived name without
removing any of its subnodes.
Returns 1 if the node was deleted; returns 0 if the node was
not found.
Does not change the external data queue.
Does not allow other accessors of compound symbols to see
partially updated symbol names.

RTVL = OPSVALUE(derivedname,'6')

A (Add)
Adds a number specified by increment to the existing
compound symbol given by derivedname.
Returns the sum of the compound symbol and the increment.
Does not change the external data queue.
All references to the compound symbol are serialized during
the ADD operation. That is, you can use this function safely
to increment a counter that is set by concurrent tasks.
RTVL = OPSVALUE(derivedname,'A',increment)

C (Compare and update)
Updates a compound symbol after verifying its current value.
Safely updates global compound symbols shared by more
than one rule or global compound symbols that multiple
copies of the same rule might access and update.
Does not change the OPS/REXX external data queue.
Returns the REXX “true” value (1), if the comparison found
the symbol’s pre-action value to be equal to old value and the
compound symbol was updated, or the REXX “false” value
(0), if the comparison found unequal values and therefore did
not update the value of the compound symbol.
Serializes the compare and update operations for global
variables.

Lesson 10 - OPS/REXX Built-in Functions

PV001 10 - 29 Computer Associates

Example: To perform the Compare and Update action, four
rather than three operands must be used with the 'C' code.
The syntax is as follows:
RTVL = OPSVALUE(derivedname,'C',newvalue,oldvalue)

Usage Example—The following example demonstrates how
a counter could be increased incrementally using the
Compare and Update action code.

)MSG IEF13241
)INIT
GLOBAL.IEF13241 = 0

)PROC
DENA = 'GLOBAL.IEF13241‘
DO WHILE ¬ OPSVALUE(DENA,'C',GLOBAL.IEF13241+1,GLOBAL.IEF13241)
END

D (Drop)
Performs the OPS/REXX DROP operation on the compound
symbol specified by derivedname. The compound symbol is
reset to its “uninitialized” value; that is, its derived name. If
derivedname is the name of a stem, then all compound
symbols belonging to that stem are not just dropped, but also
rendered “nonexistent” and the virtual storage allocated to
them is released.
Returns the value of derivedname.
Does not change the external data queue.
All other references either see the compound symbol as it
existed before the DROP operation began, or as it is after the
DROP operation completes.

RTVL = OPSVALUE(derivedname,'D')

E (Existence)
Checks to see whether a given global variable exists.
Does not change the OPS/REXX external data queue.
Returns status of a given global variable as:

I - Initialized
U - Uninitialized
N - does Not exist

RTVL = OPSVALUE('derivedname','E')

Note: For most types of variables, N and U have
interchangeable meanings. However, for global variables, N
means that no storage exists for a variable; and U means
that the variable exists in storage, but is uninitialized and is
set to the value of its name.

Lesson 10 - OPS/REXX Built-in Functions

PV001 10 - 30 Computer Associates

F (Find)
Checks to see whether a given global variable exists. The F
action is more efficient and more reliable than using the E
and O functions together.
Returns the status of a given global variable as one of these
characters:

I - Initialized
U - Uninitialized
N - does Not exist

When the returned value is not N (meaning that the derived
name exists), the value of the node is returned on the
external data queue. The maximum length of a string pulled
from the external data queue is 350 bytes. OPS/MVS
truncates longer values.
RTVL = OPSVALUE(derivedname,'F')

H (High level security)
Provides more efficient access to global variables for an
OPS/REXX program by establishing an authorization status
for subsequent global variable access requests that the
program makes. (Although you can use this function from
any environment that supports OPSVALUE—such as REXX
programs, rules, GEM, and OPSLINK—it does not perform
useful work unless you use it in an OPS/REXX program.)
The value you specify for derivedname must be either
GLOBAL.READONLY or GLOBAL.READWRITE. No other
values are permitted.
Returns a value describing the authorization status of the
OPS/REXX program:

AUTH - The request is permitted.
NOTAUTH - The request is denied (no error message is
issued).

When the AUTH value is returned, no subsequent
OPSVALUE calls from the OPS/REXX program (and any
lower level subroutines it calls) create OPSGLOBAL security
events of the type corresponding to the authority level
obtained on the preceding high level security call. In other
words:

Lesson 10 - OPS/REXX Built-in Functions

PV001 10 - 31 Computer Associates

If you specify GLOBAL.READWRITE on the function, and
the returned value is AUTH, no subsequent OPSVALUE calls
create security events.
If you specify GLOBAL.READONLY on the function, and the
returned value is AUTH, no subsequent OPSVALUE access-
type calls create security events.
This function results in an OPSGLOBAL product security
event (SEC rule). The SEC.AUGLOPCH is set to H, and the
SEC.AUGLRQTY variable is set to:

A (Access) - If you specify GLOBAL.READONLY
U (Update) - If you specify GLOBAL.READWRITE
RTVL = OPSVALUE('GLOBAL.READONLY','H')

RTVL = OPSVALUE('GLOBAL.READWRITE','H')

I (Information)
Returns to the external data queue information about all of
the immediate subnodes of the derivedname.
The derivedname value must be a compound symbol node.
The return value is the number of immediate subnodes that
exist. The external data queue contains two lines per
subnode: the first line contains the next segment of the
derived name, and the second line contains statistics about
the derived name. The second line returned for each derived
name contains the information shown below. (The first piece
of information indicates the word number, the second
indicates the length of the word, and the third describes the
word.)
− 1, 8 - The number of subnodes under this subnode.
− 2, 10 - Creation date (in the form yyyy/mm/dd).
− 3, 8 - Creation time (in the form hh:mm:ss).
− 4, 17 - Creation ruleset.rule or program name.
− 5, 8 - Creation Jobname/Taskname/TSO ID.
− 6, 10 - Last modification date (in the form yyyy/mm/dd).
− 7, 8 - Last modification time (in the form hh:mm:ss).
− 8, 17 - Last modification ruleset.rule or program name.
− 9, 8 - Last modification Jobname/Taskname/TSO ID.
− 10, 1 - This word, which is reserved, always contains the
value 0; provides compatibility with programs expecting a
numeric value.

Lesson 10 - OPS/REXX Built-in Functions

PV001 10 - 32 Computer Associates

− 11, 8 - Number of updates to this node.
− 12,10 - Last access date (in the form yyyy/mm/dd) or the
string NONE if the variable was created under an older
version of the product; permits users to determine when
global variables have not been used in a long time and thus
may be eligible for deletion.
Returns the number of subnodes listed in the external data
queue.
Places two lines per subnode in the external data queue.
Returns no partially updated symbol names.
RTVL = OPSVALUE(derivedname,'I')

K (subtree count)
Returns a count of all the subnodes of the derivedname.
The result value returned by this action is the same value
returned by the “S” or “T” action code. However, the external
data queue is not modified.
RTVL = OPSVALUE(derivedname,'K')

L (List)
Lists the derived names of all the immediate subnodes of
derivedname by placing them on the external data queue.
The results of this action illustrate the difference between
dropped symbols (processed by action D) and removed
symbols (processed by action R). Dropped symbols still exist,
so the List action can find them. The List action does not
return removed symbols.
Returns the number of subnodes listed in the external data
queue.
Places a list of subnodes of the specified nodes in the
external data queue.
Returns no partially updated symbol names.
RTVL = OPSVALUE(derivedname,'L')

O (Obtain)
Obtains the value of a global variable. If the global variable
does not exist, OPS/REXX returns an error.
Does not change the external data queue.

RTVL = OPSVALUE(derivedname,'O')

Lesson 10 - OPS/REXX Built-in Functions

PV001 10 - 33 Computer Associates

R (Remove)
Removes the node specified by derivedname and all of its
subnodes. Once a node is removed, it ceases to exist.
Returns the number of subnodes removed.
Does not change the external data queue.
Does not allow other accessors of compound symbols to see
partially updated symbols.
RTVL = OPSVALUE(derivedname,'R')

S (Subtree)
Lists the derived names of all the subnodes of derivedname
in the external data queue. Action code S is similar to code L
with two differences:
− OPS/REXX places the entire global variable name in the
external data queue.
− All subnodes of the derived name are listed.
Returns the number of subnodes listed in the external data
queue.
Places the entire global variable name in the external data
queue.
Returns no partially updated symbol names.
RTVL = OPSVALUE(derivedname,'S')

T (subTree/info)
Returns to the external data queue information on all the
subnodes of the derivedname.
The derivedname value parameter must be a compound
symbol node. The return value is the number of subnodes
that exist. The external data queue contains two lines per
subnode: the first line contains the next segment of the
derived name, and the second line contains statistics about
the derived name. (The second line contains the information
listed blow—the first piece of information indicates the word
number, the second indicates the length of the word, and the
third describes the word.)
− 1, 8 - The number of subnodes under this subnode (always
contains a zero).
− 2, 10 - Creation date (in the form yyyy/mm/dd).
− 3, 8 - Creation time (in the form hh:mm:ss).
− 4, 17 - Creation ruleset.rule or program name.

Lesson 10 - OPS/REXX Built-in Functions

PV001 10 - 34 Computer Associates

− 5, 8 - Creation Jobname/Taskname/TSO ID.
− 6, 10 - Last modification date (in the form yyyy/mm/dd).
− 7, 8 - Last modification time (in the form hh:mm:ss).
− 8, 17 - Last modification ruleset.rule or program name.
− 9, 8 - Last modification Jobname/Taskname/TSO ID.
− 10, 8 - This word, which is reserved, always contains the
value 0; provides compatibility with programs expecting a
numeric value.
− 11, 8 - Number of updates to this node.
− 12,10 - Last access date (in the form yyyy/mm/dd) or the
string NONE if the variable was created under an older
version of the product; permits users to determine when
global variables have not been used in a long time and thus
may be eligible for deletion.
Action code T resembles code I with three differences:
- The entire global variable name goes into the external data
queue.
− All subnodes of the derived name are listed.
− The “Number of Subnodes” field on the second line of the
pair of messages in the external data queue for each node
always contains zero.
Returns the number of subnodes listed in the external data
queue.
Places in the external data queue two lines per subnode and
the entire global variable name.
Returns no partially updated symbol names.

RTVL = OPSVALUE(derivedname,'T')

U (Update)
Assigns newvalue as the value of the compound symbol
specified by derivedname. If the compound does not exist,
OPS/REXX creates it then gives it the new value.
Returns the variable specified by newvalue.
Does not change the external data queue.
Prevents others accessing compound symbols from seeing
partially updated symbols.
RTVL = OPSVALUE(derivedname,'U',newvalue)

Lesson 10 - OPS/REXX Built-in Functions

PV001 10 - 35 Computer Associates

V (Value)
Returns the current value of the node specified by
derivedname. If the node does not exist, OPS/REXX creates
it but assigns it no value (giving the symbol the same value
as its name).
Returns the value of the specified compound symbol.
Does not change the external data queue.
Prevents the issuer of OPSVALUE from seeing partially
updated symbols.
RTVL = OPSVALUE(derivedname,'V')

Lesson 10 - OPS/REXX Built-in Functions

PV001 10 - 36 Computer Associates

10 - 36

)MSG DFHSI1517

)PROC

/**/

/* Rule Purpose: Set a unique OPS/REXX global variable with */

/* the initialization times of all CICS regions. */

/* DFHSI1517 cicsregion Control is being given to CICS */

/**/

JOB = MSG.JOBNAME /* set JOB to issuer of this message */

CTIME = TIME() /* set CTIME to current time */

/* Create a unique global variable using the JOB value as a */

/* stem name to make it unique. Set it to the CTIME value. */

SET = OPSVALUE('GLVTEMP1.UPTIME.'JOB,'U',CTIME)

OPSVALUE Examples

Example 1

Lesson 10 - OPS/REXX Built-in Functions

PV001 10 - 37 Computer Associates

10 - 37

)REQ CICSINIT

)PROC

/***/

/* Rule Purpose: Display initialization times of active CICS */

/* regions when requested. Obtain this info */

/* via any GLVTEMP1.UPTIME global variable. */

/* Invoked when a TSO users issues OPSREQ CICINIT */

/***/

ACTREGIONS = OPSVALUE('GLVTEMP1.UPTIME','L')

IF ACTREGIONS = '0' THEN

SAY 'NO INITIALIZED REGIONS'

ELSE

DO ACTREGIONS
PULL REGION

UPTIME = OPSVALUE('GLVTEMP1.UPTIME.'REGION,'O')

SAY 'CICSINIT – 'REGION' INIT TIME = 'UPTIME

END

RETURN

OPSVALUE Examples

Example 2

(continued)

Lesson 10 - OPS/REXX Built-in Functions

PV001 10 - 38 Computer Associates

10 - 38

IF OPSVALUE('GLVJOBID.WTOCNTR','E') =
'N' THEN GLVJOBID.WTOCNTR=0

/* Delete all subnodes */

val = OPSVALUE('GLOBALA.TEST.','D')

OPSVALUE Examples

Example 3

Example 4

(continued)

Lesson 10 - OPS/REXX Built-in Functions

PV001 10 - 39 Computer Associates

10 - 39

)TOD 02:00

/***/

/* Rule purpose : Set up Z initiators for batch window */

/* TOD rule spec fires every 2:00 AM */

/***/

)INIT

/* This rule should only be active on SYSA. Use the OPSINFO */

/* built-in function to get the SMFID of this system to see */

/* if the rules should be enabled or not. */

IF OPSINFO(‘SMFID’) <> ‘SYSA’ THEN RETURN ‘REJECT’

Comprehensive Examples

OPS/REXX host environments and
built-in functions

Lesson 10 - OPS/REXX Built-in Functions

PV001 10 - 40 Computer Associates

10 - 40

)PROC

/* Issue info message using ADDRESS WTO OPS/REXX */

/* Host Environment to let everybody know of change. */

msgtxt= ‘Initiators configured to handle 02:00 Batch Flow’

ADDRESS WTO

"MSGID(OPSAUTO1) TEXT(' "msgtxt" ') ROUTE(2)”

Comprehensive Examples (continued)

Lesson 10 - OPS/REXX Built-in Functions

PV001 10 - 41 Computer Associates

10 - 41

/* Now all drained ‘Z’ initiators will be started. */

/* A list of initiators that are set to accept Z class jobs */

/* is obtained using the OPSJES2 built-in function. */

ZINITS=OPSJES2('I','INIT','Z','D')

/* Now the ADDRESS OPER OPS/REXX Host Environment is used */

/* to issue a start command to JES for each initiator. */

DO ZINITS /* Loop for all drained Z’ inits */

PULL RECORD /* Obtain data from the EDQ */

INITID=WORD(RECORD,1) /* First word is init id */

ADDRESS OPER /* Switch to ADDRESS OPER */

"C($SI"INITID") NOO" /* Issue JES2 $SIx command */

END /* End of DO */

Comprehensive Examples (continued)

Lesson 10 - OPS/REXX Built-in Functions

PV001 10 - 42 Computer Associates

10 - 42

Lesson Summary

In this lesson, you learned to:
Describe the basic syntax requirements of
OPS/REXX functions
Demonstrate how to use OPS/REXX
functions

Lesson 10 - OPS/REXX Built-in Functions

PV001 10 - 43 Computer Associates

10 - 43

Lesson 10 Assessment

Lesson 10 Assessment
Write down your explanations of the following rule snippets in the space provided.

1. VOLUMES=OPSDEV('V','SYS*')

2. ISITUP=OPSTATUS('A','A','VTAMA')

3. RTVL=OPSVALUE('GLOBAL.VTAM.STAT','E')

4. DETAILS=OPSTATUS('A','I','VTAMA')

Lesson 10 - OPS/REXX Built-in Functions

PV001 10 - 44 Computer Associates

Lesson 10 Assessment (continued)
5. DEVICES=OPSDEV('U','157')

6. SAY 'ASID='OPSINFO('ASID')

7. GETWTORS=OPSTATUS('R','I','*')

8. RTVL=OPSVALUE('GLOBAL.JOB.CNT','O')

9. DEVICES=OPSDEV('D','*')

10. SAY 'SUBSYS='OPSINFO('SUBSYS')

11. RTVL=OPSVALUE('GLOBAL.ACTIVE.CICS','L')

12. SAY 'EVENTTYPE='OPSINFO('EVENTTYPE')

13. RTVL=OPSVALUE('GLOBAL.FLAG.IMSABEND','U','S0C4')

14. DEVICES=OPSDEV('D','DASD')

Lesson 10 - OPS/REXX Built-in Functions

PV001 10 - 45 Computer Associates

10 - 45

Lesson 10 Activity

Lesson 10 Activity – Using OPS/REXX Functions
In this activity, you will invoke OPS/REXX functions and see the data that they
return.

Note: This activity only demonstrates the data that is returned by functions that
you can use in your AOF rules.

Perform the following steps:
1. Access OPSVIEW option 2.4.

2. Specify a data set and member. (This places you in ISPF EDIT mode.)

Lesson 10 - OPS/REXX Built-in Functions

PV001 10 - 46 Computer Associates

Lesson 10 Activity (continued)
3. Type in the following code:

INVOKE_FUNCTION = function('x','x','x')
SAY '***VALUE OF INVOKE_FUNCTION = 'INVOKE_FUNCTION
IF QUEUED() = 0 THEN

SAY '***FUNCTION RETURNS NO EDQ DATA'
ELSE

SAY 'Start of captured data in the EDQ:'
DO I = 1 TO QUEUED()
PULL EDQ
SAY EDQ

END
SAY '****END OF CAPTURED DATA*****'

4. Type OPSTATUS('A', 'I', 'JES2') in place of function('x','x', 'x') in the
above code. Tab to the command line and type !OI and then press
Enter. (This executes your REXX EXEC and shows you the output.)
Press Enter until you are returned to ISPF EDIT mode. This function
returns information about the JES2 address space to the external data
queue.

5. Type OPSDEV('V', 'SYS*') in place of function('x','x', 'x') in the above
code. Tab to the command line and type !OI and then press Enter.
Press Enter until you are returned to ISPF EDIT mode. This function
returns information about all SYS* volumes to the external data queue.

6. Type OPSJES2('I', 'INIT') in place of function('x','x', 'x') in the above
code. Tab to the command line and type !OI and then press Enter.
Press Enter until you are returned to ISPF EDIT mode. This function
returns information about all initiators to the external data queue.

7. Type OPSJES2('I', 'INIT', 'A') in place of function('x','x', 'x') in the above
code. Tab to the command line and type !OI and then press Enter.
Press Enter until you are returned to ISPF EDIT mode. This function
returns information about only the active initiators to the external data
queue.

Lesson 10 - OPS/REXX Built-in Functions

PV001 10 - 47 Computer Associates

Lesson 10 Activity (continued)
8. Type OPSTATUS('R', 'I', '*') in place of function('x','x', 'x') in the above

code. Tab to the command line and type !OI and then press Enter.
Press Enter until you are returned to ISPF EDIT mode. This function
returns all outstanding WTORs to the external data queue.

9. Type OPSYSSYM('I') in place of function('x','x', 'x') in the above code.
Tab to the command line and type !OI and then press Enter. Press
Enter until you are returned to ISPF EDIT mode. This function returns
all OS/390 system symbols to the external data queue.

Lesson 10 - OPS/REXX Built-in Functions

PV001 10 - 48 Computer Associates

Final Activity
1. Access OPSVIEW option 4.5.1. Using your TSO user ID as the rule name,

create a rule from scratch using the rule set given to you by your instructor.
This rule should do the following:

Executes on the occurrence of $ HASP373 message events.
Be active on all systems except system XABC.
If the message originated from your assigned TSO user ID, suppress
the message.
Be sure to include comments that document the date of creation,
author, purpose of the rule, logic for the rule, and any user-defined
variables. Test your rule using the AOF test facility.
Tips:

OPSINFO('SMFID')
MSG.JOBNAME

2. Create a second rule from scratch that does the following:
Executes on the occurrence of $HASP100 message events.
Is active on all systems except system XABC.
If the message originated from your assigned TSO user ID, suppress
the message and remove it from the SYSLOG.
Be sure to include comments that document the date of creation,
author, purpose of the rule, logic for the rule, and any user-defined
variables. Test your rule using the AOF test facility.
Tips:

OPSINFO('SMFID')
MSG.JOBNAME

3. Create a third rule from scratch that incorporates the logic that was
implemented when you created the rules in steps 1 and 2.

Include comments that document the date of creation, author, purpose
of the rule, logic for the rule, and any user-defined variables. Test your
rule using the AOF test facility.
Tips:

$HASP*
MSG.ID

Lesson 10 - OPS/REXX Built-in Functions

PV001 10 - 49 Computer Associates

Final Activity (continued)
4. Modify the rule you created in step 3 to do the following:

If the message is $HASP373, issue a WTO to the local master console
with the message text of your choice.
Issue a D T z/OS command, regardless of the message event that
triggers the rule.
Include comments that document the new logic.
Tips:

DO…END
OPSINFO('LOCMSTCONSNM')
ADDRESS WTO
ADDRESS OPER

Lesson 10 - OPS/REXX Built-in Functions

PV001 10 - 50 Computer Associates

Notes:

Appendix A - Solutions

PV001 A - 1 Computer Associates

ca.com

Solutions

Appendix A

Appendix A - Solutions

PV001 A - 2 Computer Associates

Lesson 1 Assessment
Match the descriptions below with one of the following terms:

OPSVIEW OPSLOG REXX

SYSLOG Automation Point Unicenter CA-OPS/MVS

COF AOF Unicenter

POI EasyRule CA-SYSVIEW/E

RDF OPS/REXX EPI

CICS

OPSLOG Unicenter CA-OPS/MVS repository of system events.
EasyRule A facility for creating rules.
Automation CA’s distributed automation offering.
Point
OPS/REXX SAA-compliant programming language used in Unicenter

CA-OPS/MVS.
OPSVIEW Operations interface for Unicenter CA-OPS/MVS.
UNICENTER Automated systems operations product for z/OS environments.
CA-OPS/MVS
EPI Enables communications with VTAM applications.
COF Unicenter CA-OPS/MVS interface to CICS.
RDF A facility that lets you use SQL statements to manage data.
AOF The heart of Unicenter CA-OPS/MVS.

Appendix A - Solutions

PV001 A - 3 Computer Associates

Lesson 2 Assessment
1. If you wanted to view all of the events that occurred in your z/OS system,

which OPSVIEW option would you select?
Option 1 – OPSLOG.

2. What would you type to “jump” to the Automation Analyzer Specification
panel?
=7.2

3. Is there another way that you can access the Automation Analyzer
Specification panel? If so, explain how.
Yes. Type 2 in the Option field on the OPSVIEW Utilities menu.

4. Which command would you use to view a list of all possible data columns in
the OPSLOG?
DISPLAY.

5. Which facility would you use if you wanted to generate rules but you had little
or no REXX experience?
EasyRule (OPSVIEW Option 2.3).

6. Where does the Automation Analyzer obtain the data that it uses in its
analysis of the automation practices at your site?
OPSLOG

7. Can you enter z/OS commands via OPSVIEW?
Yes.

8. What would you type to “jump” to the EasyRule facility?
=2.3

9. Can you invoke EasyRule from the Automation Analyzer?
Yes.

10. Describe the difference between OPSVIEW and Unicenter CA-SYSVIEW.
OPSVIEW is the operations interface for Unicenter CA-OPS/MVS.
Unicenter CA-SYSVIEW is a performance monitor.

Appendix A - Solutions

PV001 A - 4 Computer Associates

Lesson 3 Assessment
Note: A week runs from Sunday to Saturday.

1. True/False: AOF rules contain OPS/REXX programs.
True.

2. When would this rule execute?)TOD 06:00,,,6
Every day at 6:00 for the next 6 days.

3. What is the major function of the AOF?
To monitor system events and respond to them.

4. Which rule section specifies the actions the rule takes when it becomes
enabled?
Initialization.

5. True/False: Each rule set is a separate data set.
True.

6. When would this rule execute?)TOD 07:30,,,,,CATCHUPYES
Every day at 7:30. It will catch up if Unicenter CA-OPS/MVS is down.

7. Name three methods for writing rules.
TSO EDIT, ISPF/PDF EDIT, OPSVIEW’s Edit option, EasyRule.

8. Which rule type can be used as an effective tool for operators to perform the
necessary command sequences for shift changes?
Pseudo command (CMD).

9. Which rule section specifies the system event that causes the rule to execute?
Event definition.

10.True/False: A rule must contain an)END statement.
False.

Appendix A - Solutions

PV001 A - 5 Computer Associates

Lesson 3 Assessment (continued)
11. How does the AOF recognize and respond to events?

Rules.

12. Which rule type enables you to create a new command?
Command (CMD)

13. When would this rule execute?)TOD 02:00
Every day at 2:00.

14. Which rule section specifies the action the rule takes when it is disabled?
Termination.

15. True/False: Rules always execute in a predictable order.
True.

16. Which part of a rule marks the end of the rule?
END statement.

17. Which rule section specifies the action to take in response to the system
event that triggered the rule?
Processing.

18. True/False: Rules are stored within rule sets.
True.

19. Which rule type enables you to respond to a WTOR message?
Message (MSG).

20. When would this rule execute?)TOD *+2 MINUTES, 15 SECONDS,,5
Two minutes after it is enabled. Then every 15 seconds until it
executes a total of 5 times.

Appendix A - Solutions

PV001 A - 6 Computer Associates

Lesson 5 Activity – Solving a Problem With EasyRule
Scenario

You need to be aware of NOT CATALOGED 2 conditions because they
are indicative of production problems. These conditions are identified in
IEF287I messages.
IEF285I messages are related normal messages that do not require
action.
You want to increase the visibility of the NOT CATALOGED 2
conditions. The presence of IEF285I messages creates visual noise,
making it difficult for you to see and respond to the important IEF287I
messages.

Task
Write two rules.

The first rule, called MNSTATUS, should not only suppress IEF285I
messages from displaying on the console, but also keep them from
appearing in the SYSLOG.

The second rule, called NOTCTLG, should highlight IEF287I
messages and post messages as described to the job log.

Steps to take:
1. Access the EasyRule Primary panel. Begin at the OPSVIEW Primary

Options Menu. Enter 2.3 into the Option field. As a result, the EasyRule
Primary panel appears, a sample of which is shown here:

EasyRule ----------- XE09 --- O P S V I E W --------------- Subsystem OPSS

COMMAND ===>

EEEEE AAAA SSSSS YY YY RRRRR UU UU LL EEEEE

EE AA AA SS YYYY RR R UU UU LL EE

EEEE AAAAAA SSSSS YY RRRRR UU UU LL EEEE

EE AA AA SS YY RR RR UU UU LL EE

EEEEE AA AA SSSSS YY RR RR UUUU LLLLL EEEEE

ISPF LIBRARY:

PROJECT ===>

GROUP ===>

TYPE ===>

MEMBER ===>

OTHER PARTITIONED DATA SET:

DATA SET NAME ===>

Do You Wish To AUTOMATICALLY step thru EasyRule? ===> N (Y/N)

Appendix A - Solutions

PV001 A - 7 Computer Associates

Lesson 5 Activity (continued)
2. Specify a data set and member for the first rule. Before you can

create the first rule, you must tell EasyRule the name of the rule set
that will contain the rule. Use the EasyRule Primary panel’s Project,
Group, and Type fields to do so. You must also specify a new member
name in the Member field. Each member of a rule set contains a single
rule, thus the name of the member is the name of the rule. To follow
along with this example, specify these values on the EasyRule Primary
panel:

Specify the data set that is to contain the new rule. For example,
this solution uses the CLCS.TSOUSER.OPSRULES data set.
Type CLCS in the Project field, TSOUSER in the Group field,
and OPSRULES in the Type field. (In place of TSOUSER, type
the user ID given to you by your instructor.)
Name the rule MNSTATUS. Type MNSTATUS in the Member
field.
Do not select automatic step-through for panel navigation.
Instead, you will use EasyRule’s menus to access the
appropriate panels. Accept the default of N for the automatic
step-through prompt.

Your panel should now be similar to the one shown here:

EasyRule ----------- XE09 --- O P S V I E W ----------------- Subsystem OPSS

COMMAND ===>

EEEEE AAAA SSSSS YY YY RRRRR UU UU LL EEEEE

EE AA AA SS YYYY RR R UU UU LL EE

EEEE AAAAAA SSSSS YY RRRRR UU UU LL EEEE

EE AA AA SS YY RR RR UU UU LL EE

EEEEE AA AA SSSSS YY RR RR UUUU LLLLL EEEEE

ISPF LIBRARY:

PROJECT ===> CLCS

GROUP ===> TSOUSER

TYPE ===> OPSRULES

MEMBER ===> MNSTATUS

OTHER PARTITIONED DATA SET:

DATA SET NAME ===>

Do You Wish To AUTOMATICALLY step thru EasyRule? ===> N (Y/N)

After you type the suggested field values and press Enter, the Rule
Type Selection panel appears, a sample of which is shown next.

Appendix A - Solutions

PV001 A - 8 Computer Associates

Lesson 5 Activity (continued)
3. Select the type of rule you want to create. From the Rule Type

Selection panel, choose option 1 to create a message rule. Notice that
this has already been done in the sample panel shown below.

EasyRule ---

OPTION ===> 1

R U L E T Y P E S E L E C T I O N

1 MSG - Create Message Event Rule

2 CMD - Create Command Event Rule

3 GLV - Create Global Variable Event Rule

4 TOD - Create Time-Of-Day Event Rule

5 OMG - Create OMEGAMON Event Rule

6 DOM - Create Delete-Operator-Message Event Rule

7 EOJ - Create End-Of-Job Event Rule

8 EOM - Create End-Of-Memory Event Rule

9 EOS - Create End-Of-Step Event Rule

10 TLM - Create Time-Limit-Exceeded Event Rule

11 USS - Create Unix Systems Services (USS) Message Event Rule

After you select option 1, the Message Rule Main Menu appears. A
sample is shown next.

4. Select MESSAGE ID from the Message Rule Main Menu. From the
Message Rule Main Menu, select 1, for MESSAGE ID. Notice that 1
has been specified in the Option field in the sample below.

EasyRule --

OPTION ===> 1

M E S S A G E R U L E M A I N M E N U

1 MESSAGE ID - Specify the ID of the message(s) to be processed

2 DOCUMENTATION - Add comments to this Rule

3 CONDITIONS - Supply additional criteria for this Rule to fire

4 ACTIONS - Take action with respect to the message(s)

5 INITIALIZATION - One-time initialization done when Rule is ENABLEd

6 TERMINATION - Specify actions to be taken when Rule is DISABLEd

When you choose 1 from the Message Rule Main Menu, the Primary
Event Specification panel for message rules appears. A sample is
shown next.

Appendix A - Solutions

PV001 A - 9 Computer Associates

Lesson 5 Activity (continued)
5. Supply the primary selection criterion. Use the Primary Event

Specification panel to specify a primary event for the MNSTATUS rule.
The primary event for a message rule is always a message ID. To
continue with this example, type IEF285I in the MSG ID field. Also
specify Y in the Just Delete field to indicate that you not only want to
suppress the message, but also want to keep it from appearing in
SYSLOG. In the sample shown below, the MSG ID and Just Delete
fields have been filled in.

EasyRule ---

COMMAND ===>

S P E C I F Y M E S S A G E I D

MSG ID => IEF285I JUST SUPPRESS ===> N (Y/N/D)

or

JUST DELETE ===> Y (Y/N/D)

DELETE FROM OPSLOG === N (Y/N)

MSG ID is used to determine if this Rule should perform an Action.

It must be 1 to 10 characters in length and may optionally include a

"wildcard" character '*'. MSG ID is the only required field.

If you just want to SUPPRESS or DELETE the message, type Y next to the

appropriate entry. Subsequent panels are bypassed if using Step-thru mode.

DELETE is like SUPPRESS, but also deletes the message from SYSLOG.

D is the same as "Y", except that the "Create Rule Comments" panel will be

displayed, allowing you to document the Rule. Default for both fields is N.

When you finish specifying values on the Primary Event Specification
panel and press Enter, EasyRule returns you to the Message Rule
Main Menu, which is shown next.

Appendix A - Solutions

PV001 A - 10 Computer Associates

Lesson 5 Activity (continued)
6. Select DOCUMENTATION from the Message Rule Main Menu.

From the Message Rule Main Menu, select 2, for DOCUMENTATION.
Notice that this has been done in the sample shown here:

EasyRule --

OPTION ===> 2

M E S S A G E R U L E M A I N M E N U

1 MESSAGE ID - Specify the ID of the message(s) to be processed

2 DOCUMENTATION - Add comments to this Rule

3 CONDITIONS - Supply additional criteria for this Rule to fire

4 ACTIONS - Take action with respect to the message(s)

5 INITIALIZATION - One-time initialization done when Rule is ENABLEd

6 TERMINATION - Specify actions to be taken when Rule is DISABLEd

When you select 2, the Create Rule Comments panel appears. A
sample Create Rule Comments panel follows.

7. Document the MNSTATUS rule. Type comments similar to those
shown below onto your own Create Rule Comments panel.

EasyRule ---

COMMAND ===>

C R E A T E R U L E C O M M E N T S

Rule Name ===> MNSTATUS

Rule Type ===> Message

Rule Function ===> Monitor status is enabled to get not cat 2 msg.________

===> This rule deletes normal disp messages.________________

===> ___

===> ___

===> ___

===> ___

===> ___

Author ===> TSOUSER__

Support ===> ___

Related Rules ===> NOTCTLG (IEF287I)______________________________________

Related CPs ===> ___

History ===> 99/11/17 - Original Development________________________

===> ___

===> ___

===> ___

Appendix A - Solutions

PV001 A - 11 Computer Associates

Lesson 5 Activity (continued)
After you enter comments for the rule, EasyRule returns you to the
Message Rule Main Menu (shown below).

EasyRule ---

OPTION ===>

M E S S A G E R U L E M A I N M E N U

1 MESSAGE ID - Specify the ID of the message(s) to be processed

2 DOCUMENTATION - Add comments to this Rule

3 CONDITIONS - Supply additional criteria for this Rule to fire

4 ACTIONS - Take action with respect to the message(s)

5 INITIALIZATION - One-time initialization done when Rule is ENABLEd

6 TERMINATION - Specify actions to be taken when Rule is DISABLEd

8. Access the EasyRule Final Options Menu. From the Message Rule
Main Menu, press PF3 to access the EasyRule Final Options Menu
(shown next).

9. Review the OPS/REXX code that EasyRule built. On the EasyRule
Final Options Menu, choose option 3, as shown here:

EasyRule --------------- XE09 --- O P S V I E W --------------- Subsystem OPSS

OPTION ===> 3

EEEEE AAAA SSSS YY YY RRRR UU UU LL EEEEE

EE AA AA SS YYYY RR R UU UU LL EE

EEEEE AAAAAA SSSSS YY RRRR UU UU LL EEEE

EE AA AA SS YY RR R UU UU LL EE

EEEEE AA AA SSSS YY RR R UUUU LLLLL EEEEE

1 SAVE - SAVE the Rule that was built and EXIT

2 CANCEL - EXIT and DO NOT SAVE the Rule that was built

3 BROWSE - Browse the generated OPS/REXX code

4 ALTER - Return to the panels to modify the Rule

DO YOU WANT TO BE ABLE TO MODIFY THIS RULE WITH EASYRULE? ==> Y (Y/N)

DO YOU INTEND TO INSERT USER PROCESSING CODE IN THIS RULE? ==> N (Y/N)

DO YOU INTEND TO INSERT USER INITIALIZATION CODE IN THIS RULE? ==> N (Y/N)

DO YOU INTEND TO INSERT USER TERMINATION CODE IN THIS RULE? ==> N (Y/N)

Appendix A - Solutions

PV001 A - 12 Computer Associates

Lesson 5 Activity (continued)
When you select option 3, a panel similar to the one shown below is
displayed.

BROWSE -- EASY_RULE_BROWSE ------------------------- LINE 00000000 COL 001 080

COMMAND ===> SCROLL ===> PAGE

******************************* Top of Data **********************************

)MSG IEF285I

/**/

/* Rule Name: MNSTATUS */

/* Rule Type: Message */

/* Rule Function: Monitor status is enabled to get not cat 2 msg. */

/* This rule deletes normal disp messages. */

/* Author: TSOUSER */

/* Related Rules: NOTCTLG (IEF287I) */

/* History: 99/11/17 - Original Development */

/**/

This panel presents the OPS/REXX code EasyRule generates as a
result of the panel entries suggested in the second part of this sample
session. This code exists only in storage; later you will save it to the
data set and member you indicated on the EasyRule Primary panel.
The next sample panel shows the OPS/REXX code and the panel
entries that correspond to it.

The OPS/MVS base product has the following components:

When you finish browsing the generated OPS/REXX code, press PF3
to return to the EasyRule Final Options Menu. A sample menu follows.

Specify Message ID PanelReturn “DELETE”

Create Rule Comments PanelComments box

Rule Type Selection Panel and Specify Message ID
Panel

MSG IEF285I

Panel EntriesOPS/REXX Code

Appendix A - Solutions

PV001 A - 13 Computer Associates

Lesson 5 Activity (continued)
10. Save the OPS/REXX code as a new rule. From the EasyRule Final

Options Menu, select 1, for SAVE. Notice that 1 appears in the Option field
below.

EasyRule --------------- XE09 --- O P S V I E W --------------- Subsystem OPSS

OPTION ===> 1

EEEEE AAAA SSSS YY YY RRRR UU UU LL EEEEE

EE AA AA SS YYYY RR R UU UU LL EE

EEEEE AAAAAA SSSSS YY RRRR UU UU LL EEEE

EE AA AA SS YY RR R UU UU LL EE

EEEEE AA AA SSSS YY RR R UUUU LLLLL EEEEE

1 SAVE - SAVE the Rule that was built and EXIT

2 CANCEL - EXIT and DO NOT SAVE the Rule that was built

3 BROWSE - Browse the generated OPS/REXX code

4 ALTER - Return to the panels to modify the Rule

DO YOU WANT TO BE ABLE TO MODIFY THIS RULE WITH EASYRULE? ==> Y (Y/N)

DO YOU INTEND TO INSERT USER PROCESSING CODE IN THIS RULE? ==> N (Y/N)

DO YOU INTEND TO INSERT USER INITIALIZATION CODE IN THIS RULE? ==> N (Y/N)

DO YOU INTEND TO INSERT USER TERMINATION CODE IN THIS RULE? ==> N (Y/N)

When you choose 1 from the EasyRule Final Options Menu, EasyRule
saves the rule to the data set and member you specified earlier, and returns
you to the EasyRule Primary panel.

11. Specify a data set and member for the second rule. You should now be
on the EasyRule Primary panel. You must now tell EasyRule the name of
the rule set that will contain the second rule. As you did for the first rule, use
the Project, Group, and Type fields on the EasyRule Primary panel to do so.
You must also specify a new member name in the Member field. Specify
these values:

Indicate that you want the CLCS.TSOUSER.OPSRULES data set to
contain the MNSTATUS rule. Type CLCS in the Project field,
TSOUSER in the Group field, and OPSRULES in the Type field. (In
place of TSOUSER, type the user ID given to you by your instructor.)
Name the rule NOTCTLG. Type NOTCTLG in the Member field.
Once again, accept the default of N for the automatic step-through
prompt.

Appendix A - Solutions

PV001 A - 14 Computer Associates

Lesson 5 Activity (continued)
Your panel should now be similar to the one shown here:

EasyRule --------------- XE09 --- O P S V I E W ------------- Subsystem OPSS

COMMAND ===>

EEEEE AAAA SSSSS YY YY RRRRR UU UU LL EEEEE

EE AA AA SS YYYY RR R UU UU LL EE

EEEE AAAAAA SSSSS YY RRRRR UU UU LL EEEE

EE AA AA SS YY RR RR UU UU LL EE

EEEEE AA AA SSSSS YY RR RR UUUU LLLLL EEEEE

ISPF LIBRARY:

PROJECT ===> CLCS

GROUP ===> TSOUSER

TYPE ===> OPSRULES

MEMBER ===> NOTCTLG

OTHER PARTITIONED DATA SET:

DATA SET NAME ===>

Do You Wish To AUTOMATICALLY step thru EasyRule? ===> N (Y/N)

After you type the suggested field values and press Enter, the Rule
Type Selection panel appears, a sample of which is shown next.

12. Select the type of rule you want to create. To select a rule type,
enter its code into the Option field of the Rule Type Selection panel.
To follow along with this example, enter 1 to create a message rule,
as shown here:

EasyRule ---

OPTION ===> 1

R U L E T Y P E S E L E C T I O N

1 MSG - Create Message Event Rule

2 CMD - Create Command Event Rule

3 GLV - Create Global Variable Event Rule

4 TOD - Create Time-Of-Day Event Rule

5 OMG - Create OMEGAMON Event Rule

6 DOM - Create Delete-Operator-Message Event Rule

7 EOJ - Create End-Of-Job Event Rule

8 EOM - Create End-Of-Memory Event Rule

9 EOS - Create End-Of-Step Event Rule

10 TLM - Create Time-Limit-Exceeded Event Rule

11 USS - Create Unix Systems Services (USS) Message Event Rule

EasyRule provides a main menu for each type of rule. Since you
chose option 1 on the Rule Type Selection panel to create a message
rule, the Message Rule Main Menu appears next. A sample is shown
next.

Appendix A - Solutions

PV001 A - 15 Computer Associates

Lesson 5 Activity (continued)
13. Select MESSAGE ID from the Message Rule Main Menu. Select

option 1, for MESSAGE ID, from the Message Rule Main Menu.
Notice that 1 has been specified in the sample panel shown here:

EasyRule ---

OPTION ===> 1

M E S S A G E R U L E M A I N M E N U

1 MESSAGE ID - Specify the ID of the message(s) to be processed

2 DOCUMENTATION - Add comments to this Rule

3 CONDITIONS - Supply additional criteria for this Rule to fire

4 ACTIONS - Take action with respect to the message(s)

5 INITIALIZATION - One-time initialization done when Rule is ENABLEd

6 TERMINATION - Specify actions to be taken when Rule is DISABLEd

In response to your selection, the Primary Event Specification Panel
for message rules appears. A sample is shown next.

14. Supply the primary selection criterion. There is a unique Primary
Event Specification panel for each type of rule. The primary event is
the criterion that is used to execute the rule. For message rules, the
primary event is always a message ID. To continue with this example,
enter IEF287I in the MSG ID field. Notice that this has already been
done in the sample panel shown here:

EasyRule ---

COMMAND ===>

S P E C I F Y M E S S A G E I D

MSG ID => IEF287I JUST SUPPRESS ===> N (Y/N/D)

or

JUST DELETE ===> N (Y/N/D)

DELETE FROM OPSLOG === N (Y/N)

MSG ID is used to determine if this Rule should perform an Action.

It must be 1 to 10 characters in length and may optionally include a

"wildcard" character '*'. MSG ID is the only required field.

If you just want to SUPPRESS or DELETE the message, type Y next to the

appropriate entry. Subsequent panels are bypassed if using Step-thru mode.

DELETE is like SUPPRESS, but also deletes the message from SYSLOG.

D is the same as "Y", except that the "Create Rule Comments" panel will be

displayed, allowing you to document the Rule. Default for both fields is N.

After you specify the message ID for the rule, EasyRule returns you to
the Message Rule Main Menu, which is shown next.

Appendix A - Solutions

PV001 A - 16 Computer Associates

Lesson 5 Activity (continued)
15. Select DOCUMENTATION from the Message Rule Main Menu.

From Message Rule Main Menu, select 2, for DOCUMENTATION.
Notice that 2 has been specified in the sample here:

EasyRule ---

OPTION ===> 2

M E S S A G E R U L E M A I N M E N U

1 MESSAGE ID - Specify the ID of the message(s) to be processed

2 DOCUMENTATION - Add comments to this Rule

3 CONDITIONS - Supply additional criteria for this Rule to fire

4 ACTIONS - Take action with respect to the message(s)

5 INITIALIZATION - One-time initialization done when Rule is ENABLEd

6 TERMINATION - Specify actions to be taken when Rule is DISABLEd

In response to your selection, the Create Rule Comments panel
appears. A sample panel is shown next.

16. Document the rule you are creating. It is always a good idea to
provide comments for a rule. Type comments similar to those shown
below onto your own Create Rule Comments panel. These comments
provide you with an audit trail of changes in the History section, and a
general explanation of the original problem in Rule Function section.

EasyRule ---

COMMAND ===>

C R E A T E R U L E C O M M E N T S

Rule Name ===> NOTCTLG

Rule Type ===> Message

Rule Function ===> Increase the visibility of data set catalog____________

===> failures as they are indicative of production__________

===> problems.__

===> ___

===> ___

===> ___

===> ___

Author ===> TSOUSER__

Support ===> ___

Related Rules ===> MNSTATUS (IEF285I)_____________________________________

Related CPs ===> ___

History ===> 99/11/17 - Original Development________________________

===> ___

===> ___

===> ___

After you enter comments for the rule, EasyRule returns you once
more to the Message Rule Main Menu.

Appendix A - Solutions

PV001 A - 17 Computer Associates

Lesson 5 Activity (continued)
17. Select ACTIONS from the Message Rule Main Menu. From the

Message Rule Main Menu, select 4, for ACTIONS. Notice that 4 has
been specified in the sample shown here:

EasyRule ---

OPTION ===> 4

M E S S A G E R U L E M A I N M E N U

1 MESSAGE ID - Specify the ID of the message(s) to be processed

2 DOCUMENTATION - Add comments to this Rule

3 CONDITIONS - Supply additional criteria for this Rule to fire

4 ACTIONS - Take action with respect to the message(s)

5 INITIALIZATION - One-time initialization done when Rule is ENABLEd

6 TERMINATION - Specify actions to be taken when Rule is DISABLEd

In response to your entry, the Take Action menu for message rules
appears. Use this menu to specify the actions that you want to take
place when the rule is enabled. A sample Take Action menu appears
next.

18. Select O from the Take Action menu. For this example, suppose
that you want OPS/MVS to write the IEF287I messages to your job
log. To do this, you need to instruct OPS/MVS to issue two console
commands. Before you can specify these commands, you must select
O, for Issue Operator Commands, from the Take Action menu. Notice
that in the sample panel illustrated, O has been specified in the
Option field.

EasyRule ---

OPTION ===> O

M E S S A G E R U L E -- T A K E A C T I O N

The actions you specify via these panels will be taken for all messages that

have the Message ID you specified and pass any additional tests you supplied

via the "Additional Criteria" panels.

1 Suppress G Update Global variables

2 Delete (Suppress w/ no SYSLOG) L Update Local or Global variables

3 Re-route to other consoles M Issue OS/390 messages

4 Re-word the Message O Issue Operator commands

5 Hilite/Color/Change DESC codes P Page support people

6 Reply (WTORs only) Q Perform SQL update or insert

7 Send to another system (MSF) S Send messages to TSO users

8 Throttle Message display rate U Issue UNIX commands

9 Update Environmental variables X Run REXX/CLIST program in Server

After you enter O in the Option field, the Issue Console Commands
panel appears. A sample panel appears next.

Appendix A - Solutions

PV001 A - 18 Computer Associates

Lesson 5 Activity (continued)
19. Write messages to the job log. You can now enter the commands

that you want OPS/MVS to issue when the rule is enabled. On your
Issue Console Commands panel, type the commands as shown
below. These entries will cause OPS/MVS to issue two display
message commands to record the problem in the job log.

Note: These sample entries apply to a JES2 environment only. For
JES3 environments, you would need to use a slightly different
procedure.

In the first command, msg.jobnm will be replaced by the name of the
job that had the cataloging problem, followed by the text of the
original IEF287I message. The second command is a warning to
verify the results of the job.

EasyRule ---

COMMAND ===>

I S S U E C O N S O L E C O M M A N D S

CMD 1 ===> $d m {msg.jobnm},received {msg.text}___________

CMD 2 ===> $d m {msg.jobnm},verify results________________

CMD 3 ===> ___

CMD 4 ===> ___

CMD 5 ===> ___

CMD 6 ===> ___

CMD 7 ===> ___

CMD 8 ===> ___

CMD 9 ===> ___

CMD 10 ===> ___

CMD 11 ===> ___

CMD 12 ===> ___

CMD 13 ===> ___

CMD 14 ===> ___

CMD 15 ===> ___

CMD 16 ===> ___

After you enter the console commands, EasyRule returns you to the
Take Action menu (shown next).

Appendix A - Solutions

PV001 A - 19 Computer Associates

Lesson 5 Activity (continued)
20. Select 5 from the Take Action menu. Select 5, for

Hilite/Color/Change DESC Codes. Notice that in the sample shown
below, 5 has been specified.

EasyRule ---

OPTION ===> 5

M E S S A G E R U L E -- T A K E A C T I O N

The actions you specify via these panels will be taken for all messages that

have the Message ID you specified and pass any additional tests you supplied

via the "Additional Criteria" panels.

1 Suppress G Update Global variables

2 Delete (Suppress w/ no SYSLOG) L Update Local or Global variables

3 Re-route to other consoles M Issue OS/390 messages

4 Re-word the Message O Issue Operator commands

5 Hilite/Color/Change DESC codes P Page support people

6 Reply (WTORs only) Q Perform SQL update or insert

7 Send to another system (MSF) S Send messages to TSO users

8 Throttle Message display rate U Issue UNIX commands

9 Update Environmental variables X Run REXX/CLIST program in Server

After you select option 5, the Hilite/Descriptor Codes panel appears.
A sample is shown next.

21. Specify descriptor code as SYSFAIL. On the Hilite/Descriptor
Codes panel, place the letter S in the space in front of SYSFAIL, as
shown below. Doing so indicates that you want to change the old
descriptor code to a value of 1.

EasyRule ---

COMMAND ===>

M E S S A G E R U L E -- H I L I T E / D E S C R I P T O R C O D E S

Use S to select one or more of the following NEW Descriptor codes:

S SYSFAIL (1) - (Hilite, non-scrollable)

_ IMEDACTN (2) - (Hilite only)

(NOTE: Codes 1-6 and 11 _ EVENACTN (3)

are mutually exclusive) _ SYSSTAT (4)

_ IMEDCMD (5)

_ JOBSTAT (6)

_ APPLPRGM (7)

_ OOLMSG (8)

_ OPERREQ (9)

_ DYNSTAT (10)

_ CRITEVET (11)

Other Descriptor code(s) ===> __ __ __ __ __

Variable containing Descriptor code(s) ===> _____________________________

After you type S and press Enter, you return to Take Action menu.

Appendix A - Solutions

PV001 A - 20 Computer Associates

Lesson 5 Activity (continued)
22. Access the EasyRule Final Options Menu. From the Take Action

menu, press PF3 until the EasyRule Final Options Menu appears.
You use the EasyRule Final Options Menu to determine the
disposition of the OPS/REXX code EasyRule built from your panel
entries. A sample EasyRule Final Options Menu is shown next.

23. Review the OPS/REXX code that EasyRule built. Computer
Associates recommends that you review the code EasyRule
generated for your rule. To do so, choose option 3, for BROWSE, on
the EasyRule Final Options Menu. Notice that 3 has been specified in
the sample panel shown here:

EasyRule --------------- XE09 --- O P S V I E W --------------- Subsystem OPSS

OPTION ===> 3

EEEEE AAAA SSSS YY YY RRRR UU UU LL EEEEE

EE AA AA SS YYYY RR R UU UU LL EE

EEEEE AAAAAA SSSSS YY RRRR UU UU LL EEEE

EE AA AA SS YY RR R UU UU LL EE

EEEEE AA AA SSSS YY RR R UUUU LLLLL EEEEE

1 SAVE - SAVE the Rule that was built and EXIT

2 CANCEL - EXIT and DO NOT SAVE the Rule that was built

3 BROWSE - Browse the generated OPS/REXX code

4 ALTER - Return to the panels to modify the Rule

DO YOU WANT TO BE ABLE TO MODIFY THIS RULE WITH EASYRULE? ==> Y (Y/N)

DO YOU INTEND TO INSERT USER PROCESSING CODE IN THIS RULE? ==> N (Y/N)

DO YOU INTEND TO INSERT USER INITIALIZATION CODE IN THIS RULE? ==> N (Y/N)

DO YOU INTEND TO INSERT USER TERMINATION CODE IN THIS RULE? ==> N (Y/N)

Appendix A - Solutions

PV001 A - 21 Computer Associates

Lesson 5 Activity (continued)
When you enter 3 on the EasyRule Final Options Menu, a panel
similar to the sample here appears:

BROWSE -- EASY_RULE_BROWSE ------------------------- LINE 00000000 COL 001 080

COMMAND ===> SCROLL ===> PAGE

******************************* Top of Data **********************************

)MSG IEF287I

/**/

/* Rule Name: NOTCTLG */

/* Rule Type: Message */

/* Rule Function: Increase the visibility of data set catalog */

/* failures as they are indicative of production */

/* problems. */

/* Author: TSOUSER */

/* Related Rules: MNSTATUS (IEF285I) */

/* History: 99/11/17 - Original Development */

/**/

)PROC

MSG.DESC = OPSBITS("SYSFAIL")

Address "OPER"

"$d m "msg.jobnm",received "msg.text

The panel shown above presents the OPS/REXX code EasyRule
generates as a result of the panel entries suggested in this sample
session. This code exists only in storage; later you will save it to the
data set and member that you specified on the EasyRule Primary
panel. This table shows the OPS/REXX code and the panel entries
that correspond to it:

Primary Event Specification panelReturn

Issue Console Commands panelCommands in the
Address OPER
section

Hilite/Descriptor Codes panelValue of
MSG.DESC

Create Rule Comments panelComments box

Rule Type Selection panel and Primary Event
Specification panel

MSG IEF287I

Panel EntryOPS/REXX Code

Appendix A - Solutions

PV001 A - 22 Computer Associates

Lesson 5 Activity (continued)
24. Save the OPS/REXX code as a new rule. When you finish browsing

the generated OPS/REXX code, press PF3 to return to the EasyRule
Final Options Menu, shown here:

EasyRule --------------- XE09 --- O P S V I E W --------------- Subsystem OPSS

OPTION ===> 1

EEEEE AAAA SSSS YY YY RRRR UU UU LL EEEEE

EE AA AA SS YYYY RR R UU UU LL EE

EEEEE AAAAAA SSSSS YY RRRR UU UU LL EEEE

EE AA AA SS YY RR R UU UU LL EE

EEEEE AA AA SSSS YY RR R UUUU LLLLL EEEEE

1 SAVE - SAVE the Rule that was built and EXIT

2 CANCEL - EXIT and DO NOT SAVE the Rule that was built

3 BROWSE - Browse the generated OPS/REXX code

4 ALTER - Return to the panels to modify the Rule

DO YOU WANT TO BE ABLE TO MODIFY THIS RULE WITH EASYRULE? ==> Y (Y/N)

DO YOU INTEND TO INSERT USER PROCESSING CODE IN THIS RULE? ==> N (Y/N)

DO YOU INTEND TO INSERT USER INITIALIZATION CODE IN THIS RULE? ==> N (Y/N)

DO YOU INTEND TO INSERT USER TERMINATION CODE IN THIS RULE? ==> N (Y/N)

Select 1 from the menu, as shown in the sample above. As a result,
EasyRule saves the rule to the data set and member you specified
earlier and returns you to the EasyRule Primary panel.

Appendix A - Solutions

PV001 A - 23 Computer Associates

Lesson 6 Activity - Testing Rules
Task

Use the OPSVIEW Editors option to test the rules named NOTCTLG
and MNSTATUS, which you created in Activity 2.2.

Steps to Take
1. Is the AOF Test Rule List panel displayed?

For this step, you must ensure that the AOF Test Rule List panel is
being displayed, an example of which is shown here.

AOF TEST - Rule List ------ TSOUSER.OPS.RULES --------------------------------

COMMAND ===> SCROLL ===> PAGE

Line Commands: R EasyRule S ISPF Edit T Test C Compile

E Enable D Disable A Set Auto-Enable Z Reset Auto-Enable X Delcomp

Test Start Date : 2003/07/30 Test Start Time : 13:54:00

Test Current Date : 2003/07/30 Test Current Time: 13:54:00

RULENAME STATUS AE TYP VV.MM CREATED MODIFIED SIZE INIT MOD ID

NOTCTLG DISABLED Y *** 01.04 03/07/17 99/11/17 18:38 7 5 3 TSOUSER

MNSTATUS DISABLED Y *** 01.04 03/07/17 99/11/17 18:48 7 5 3 TSOUSER

Action:
If the Rule List panel is being displayed, go to “Step 2: Enable your rule
and select it for testing.” If not, proceed with the following instructions:

If the AOF Edit panel is being displayed, press your PF3 key (or
enter END).
If the main OPSVIEW menu panel is being displayed, select 2.1,
and then enter your test library name in the AOF EDIT Entry
panel.
If the AOF Edit Entry panel is being displayed, enter your test
library name.

2. Enable your rule and select it for testing
This step prepares your rule for testing.

Actions:
On the Rule List Panel, type E to the left of the desired rule
name.

Appendix A - Solutions

PV001 A - 24 Computer Associates

Lesson 6 Activity - Testing Rules (continued)
Press Enter. In response, two fields on the Rule List Panel (as shown in
the example screen below) change. This example shows how the panel
looks after the changes. Notice that for the rule named MNSTATUS,
the value in the Status field has changed to ENABLED and the value in
the Typ field has changed to MSG. In addition, the message “AOF
RULE ENABLED” appears in the upper-right corner of the panel.

Note: If your rule contains syntax errors, the E command fails.

AOF TEST - Rule List ------ TSOUSER.OPS.RULES ---------------AOF RULE ENABLED

COMMAND ===> SCROLL ===> PAGE

Line Commands: R EasyRule S ISPF Edit T Test C Compile

E Enable D Disable A Set Auto-Enable Z Reset Auto-Enable X Delcomp

Test Start Date : 2003/07/30 Test Start Time : 13:54:00

Test Current Date : 2003/07/30 Test Current Time: 13:54:00

RULENAME STATUS AE TYP VV.MM CREATED MODIFIED SIZE INIT MOD ID

NOTCTLG DISABLED Y *** 01.04 03/07/17 99/11/17 18:38 7 5 3 TSOUSER

MNSTATUS ENABLED Y MSG 01.04 03/07/17 99/11/17 18:48 7 5 3 TSOUSER

Type T to the left of the desired rule name and press Enter.

3. Test your rule
When you select a message rule for testing, the AOF takes you to the
AOF Test MSG panel. The panel prompts you for information about the
message rule you want to test. A sample panel appears below. Note
that at the bottom of this panel, a portion of the OPSLOG, OPS/MVS’s
powerful and flexible system log, is displayed. The format of this
example OPSLOG results from a Display command being entered in
the Command field. This command is:

D TIME DISP

This command tells OPS/MVS to display the following information for
each rule:

Time that the event with which the rule is connected appeared in
OPSLOG
Final disposition of the event as determined by the AOF

Appendix A - Solutions

PV001 A - 25 Computer Associates

Lesson 6 Activity - Testing Rules (continued)

AOF Test MSG ------------ XE09 --- OPSVIEW --- 15:27:24 30JUL2003 COLS 001 070

COMMAND ===> SCROLL ===> PAGE

REXX Trace ==> N Live Commands ==> NO Access Auto Test Data: (Y/N)

Msg Id: TEST Msg Disp: Normal Hardcopy Log: Yes

Jobname ==> IMS Id ==>

Job Id ==> Exit Type ==>

MSF Sys ==> Console Id ==>

User ==> Console Nm ==>

Sys Id ==> MCS Flags ==>

Special Ch ==> Descriptor ==>

Route ==>

Term Name ==> Report Id ==>

Message :=>

Time Dis ----+----1----+----2----+----3----+----4----+----5----+----6----+-

******** *** ***************** TOP OF MESSAGES *******************************

10:18:37 NON ENABLE CRLC10.MNSTATUS

10:18:37 NON ENABLE CRLC10.MNSTATUS

10:18:37 000 OPS3900O RULE CRLC10.MNSTATUS FOR MSG IEF285I NOW ENABLE

******** *** **************** BOTTOM OF MESSAGES ******************************

Actions: Enter values on the AOF Test MSG panel.
Type the message ID and any text in the Message field. For
example, you could type IEF285I SAMPLE MESSAGE into the
Message field.
Press Enter to run a test message against the enabled rule.

Appendix A - Solutions

PV001 A - 26 Computer Associates

Lesson 6 Activity - Testing Rules (continued)
4. Check the test results

The sample panel that appears below shows results of your rule test.

AOF Test MSG ------------ XE09 --- OPSVIEW --- 15:27:24 30JUL2003 COLS 001 070

COMMAND ===> SCROLL ===> PAGE

REXX Trace ==> N Live Commands ==> NO Access Auto Test Data: (Y/N)

Msg Id: TEST Msg Disp: Delete Hardcopy Log: Yes

Jobname ==> NONE IMS Id ==>

Job Id ==> Exit Type ==> MVS

MSF Sys ==> Console Id ==> 1

User ==> Console Nm ==>

Sys Id ==> MCS Flags ==> 000000

Special Ch ==> Descriptor ==> 0000

Route ==> 00000000000000000000000000000000

Term Name ==> Report Id ==>

Message :=> IEF285I

Time Dis ----+----1----+----2----+----3----+----4----+----5----+----6----+-

******** *** ***************** TOP OF MESSAGES *******************************

10:18:37 NON ENABLE CRLC10.MNSTATUS

10:18:37 NON ENABLE CRLC10.MNSTATUS

10:18:37 000 OPS3900O RULE CRLC10.MNSTATUS FOR MSG IEF285I NOW ENABLE

10:18:50 DEL IEF285I

10:18:56 DEL IEF285I

******** *** **************** BOTTOM OF MESSAGES ******************************

Actions:
Examine the results of the test in the OPSLOG.
Press your PF3 key or enter END on the command line.

Appendix A - Solutions

PV001 A - 27 Computer Associates

Lesson 7 Assessment
1. True/False: OPS/REXX adds to standard REXX a set of extensions that

automate and enhance the productivity of OS/390 operations.
True.

2. What would you use this REXX instruction for? PARSE VAR name [template]
To assign data to one or more variables.

3. Which REXX function returns the time in this format? /* 11:56:04 */
SAY TIME()

4. Which REXX instruction is used to group instructions together and execute
them conditionally?
DO WHILE expression

5. True/False: REXX programs are built upon clauses.
True.

6. The PUSH instruction is not available in OPS/REXX. Which alternative
instruction can you use to achieve the same results?
QUEUE.

7. What would you use this REXX instruction for? IF…THEN…ELSE
To conditionally execute an instruction or group of instructions.

8. Which REXX operator combines two strings by appending the second string
to the end of the first one?
Concatenation.

9. Name four REXX arithmetic operators.
Add, subtract, multiple, divide, integer divide, remainder.

10. True/False: OPS/REXX programs are called rules outside the AOF
environment.
False.

Appendix A - Solutions

PV001 A - 28 Computer Associates

Lesson 7 Assessment (continued)
11. True/False: Standard SAA REXX I/O functions are supported in

OPS/REXX.
False.

12. What would this function return? SAY DATE('U')
The date in USA format (mm/dd/yy).

13. True/False: In OPS/REXX, a PULL instruction to an empty external data
queue results in a null line being returned.
True.

14. Define an instruction in REXX.
One or more clauses that describe an action to be taken.

15. Describe the difference in how standard REXX and OPS/REXX resolve
external subroutines.
In standard REXX, external subroutines are resolved only when they
are called during execution. In OPS/REXX, external subroutines are
resolved and bound with the main program prior to execution.

Appendix A - Solutions

PV001 A - 29 Computer Associates

Lesson 8 Assessment
1. All variables have which characteristics?

a. They can contain character strings of up to 256 bytes.
b. They are not used in rules.
c. Derived names of variables can contain up to 50 characters.
d. Their values can change while a program is running.
e. b and d.
f. a, c, and d.

2. Rules can use which type of variable?
a. Global.
b. Static.
c. Local.
d. Event-related.
e. Temporary.
f. All of the above.

3. Global variables have which characteristics?
a. They permit serial access.
b. They have the form GLVTEMPx.XXXX.
c. They have the form GLOBALx.XXXX.
d. They allow data to be shared between different rules for events that

that occur in the same address space.
e. b and c.
f. a, b, and c.
g. b, c, and d.

4. Static variables have which characteristics?
a. They maintain a fixed value across multiple executions of a single

rule.
b. They permit serial access.
c. They are compound symbols.
d. They are available in the)INIT and)PROC sections of a rule.
e. a, b, and c.
f. a and c.
g. None of the above.

Appendix A - Solutions

PV001 A - 30 Computer Associates

Lesson 8 Assessment (continued)
5. Event-related variables have which characteristics?

a. They are available in the)PROC and)TERM sections of a rule.
b. They correspond to the rule event types.
c. They are automatically provided by the AOF engine.
d. b only.
e. a, b, and c.
f. b and c.

6. Dynamic variables have which characteristics?
a. Their value can be up to 256 bytes in length.
b. They are simple variables or non-global compound symbols.
c. They are created each time a rule executes.
d. a and c.
e. a, b, and c.
f. b and c.
g. None of the above.

7. Temporary variables have which characteristics?
a. They have the form GLVTEMP.XXXX.
b. They have the form GLVEVENT.XXXX.
c. They allow data to be shared by different rules that are processing the

same event.
d. They are automatically deleted.
e. They are available only in the)PROC section of a rule.
f. a, c, and d.
g. b, c, d, and e.

8. Local variables have which characteristics?
a. They are available only in the)PROC section of a rule.
b. They are unique to the address space that triggered the rule.
c. They have the form GLVJOBID.XXXX.
d. They allow data to be shared between different rules for events that

occur in the same address space.
e. All of the above.

Appendix A - Solutions

PV001 A - 31 Computer Associates

Lesson 9 Assessment
Write the appropriate letter next to each description below.

h Issue system messages as WTOs and WTORs.
g Control Unicenter CA-OPS/MVS components.
l Route commands to TSO.
j Issue commands for dynamic allocation,

concatenation, deconcatenation, and
information retrieval functions.

k Issue operator commands from an OPS/REXX
program or AOF rule.

a Send UNIX commands to servers.
n Create and maintain relational tables.
b Programmatically control rules and create

dynamic AOF rules.
p Route commands to server address spaces.
m Programmatically control VTAM applications.
q Dispatch an OPS/REXX program to a specially

classified long running server.
r Dispatch an OPS/REXX program to a specially

classified priority server.

a. ADDRESS USS
b. ADDRESS AOF
c. ADDRESS NETMAN
d. ADDRESS RDF
e. ADDRESS REXX
f. ADDRESS SYSVIEWE
g. ADDRESS OPSCTL
h. ADDRESS WTO
i. ADDRESS MSF
j. ADDRESS OPSDYNAM
k. ADDRESS OPER
l. ADDRESS TSO
m. ADDRESS EPI
n. ADDRESS SQL
o. ADDRESS SYSVIEW
p. ADDRESS OSF
q. ADDRESS OSFTSL
r. ADDRESS OSFTSP

Appendix A - Solutions

PV001 A - 32 Computer Associates

Lesson 10 Assessment
Write down your explanations of the following rule snippets in the space provided.

1. VOLUMES=OPSDEV('V','SYS*')
Returns a 15-word record for each SYS* volume (UCB, volume, status,
type, reserve status, etc.).

2. ISITUP=OPSTATUS('A','A','VTAMA')
Sets the variable to 1 if it is active, 0 if it is not active.

3. RTVL=OPSVALUE('GLOBAL.VTAM.STAT','E')
Sets the variable to I (initialized), U (uninitialized), or N (does not exist).

4. DETAILS=OPSTATUS('A','I','VTAMA')
Returns a detailed record to the external data queue, including address
space information (address space ID, status, completed steps, CPU
time, etc.).

5. DEVICES=OPSDEV('U','157')
Returns information about all online devices whose device numbers
contain 157 in the first three positions.

6. SAY 'ASID='OPSINFO('ASID')
Sets a variable to the address space ID.

7. GETWTORS=OPSTATUS('R','I','*')
Returns all WTORs to the external data queue.

8. RTVL=OPSVALUE('GLOBAL.JOB.CNT','O')
Sets the variable to a value of GLOBAL.JOB.CNT.

9. DEVICES=OPSDEV('D','*')
Returns information about all online devices (DASD, TAPE, UREC,
COMM, etc.).

10. SAY 'SUBSYS='OPSINFO('SUBSYS')
Sets a variable to the z/OS subsystem name that Unicenter
CA-OPS/MVS is using.

Appendix A - Solutions

PV001 A - 33 Computer Associates

Lesson 10 Assessment (continued)
11. RTVL=OPSVALUE('GLOBAL.ACTIVE.CICS','L')

Lists all subnodes in the external data queue.

12. SAY 'EVENTTYPE='OPSINFO('EVENTTYPE')
Sets a variable to the type of event that the rule is processing.

13. RTVL=OPSVALUE('GLOBAL.FLAG.IMSABEND','U','S0C4')
Updates the GLOBAL variable to a value of S0C4.

14. DEVICES=OPSDEV('D','DASD')
Returns information about all DASD devices.

Appendix A - Solutions

PV001 A - 34 Computer Associates

Notes:

