3) Parsing

Instructions: PARSE, ARG,
Patterns.

Resources: TSO REXX Reference
Chapter 5. Parsing

This course has been prepared by Milos Forman for MCoE needs only!

Copyright ©2006 CA. All rights reserved. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

PROPRIETARY AND CONFIDENTIAL INFORMATION

These education materials and related computer software program (hereinafter referred to as

the "Education Materials") is for the end user’s informational purposes only and is subject to
change or withdrawal by CA, Inc. at any time.

These Education Materials may not be copied, transferred, reproduced, disclosed or
distributed, in whole or in part, without the prior written consent of CA. These Education
Materials are proprietary information and a trade secret of CA. Title to these Education
Materials remains with CA, and these Education Materials are protected by the copyright laws
of the United States and international treaties. All authorized reproductions must be marked
with this legend.

RESTRICTED RIGHTS LEGEND

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION "AS
IS" WITHOUT WARRANTY OF ANY KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO THE END USER OR ANY THIRD
PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS
DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, BUSINESS
INTERRUPTION, GOODWILL OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED OF SUCH
LOSS OR DAMAGE.

THE USE OF ANY PRODUCT REFERENCED IN THIS DOCUMENTATION AND THIS
DOCUMENTATION IS GOVERNED BY THE END USER’S APPLICABLE LICENSE AGREEMENT.
The manufacturer of this documentation is CA, Inc.

Provided with "Restricted Rights" as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections
52.227-19(c)(1) and (2) or DFARS Section 252.227.7013(c)(1)(ii) or applicable successor
provisions.

Copyright ©2006 CA. All rights reserved. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies .

Parse instruction

PARSE

»+—PARSE ARG
l—UPF"EFi{J —EXTERNAL Ltemplafe_! ESEJ
—NUMERIC
—PULL

—SOURCE

—VALUE WITH—
I—express ionJ

—VAR—~name
L WVERSION

PARSE assigns data (from various sources) to one or more variables according to
the rules of parsing (see Chapter 5, “Parsing,” on page 165).

Copyright ©2006 CA. All rights reserved. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies. .

Parse instruction

The PARSE instruction tells REXX how to assign data to one or more
variables. The data to assign can be from the terminal, the data stack, or from
arguments passed to a subroutine or function. The way in which REXX
assigns data to a variable is governed by what is known as a ’parsing
template’, discussed below.

‘template’ is made up of alternating optional "patterns" and variable names.
"patterns” are of two types: those that cause parsing to search for a matching
string (variable patterns and literal patterns) and numeric patterns that supply

a string position number in the data from which parsing is to extract data.
Any number of "patterns" and

variables can be intermixed.

Parse - Operands

- PARSE UPPER
- tells REXX to translate the data to be parsed to uppercnse

before parsing is done. Without the UPPER option, no
uppercase translation is done before or after parsing.

- PARSE ARG

- The arguments passed to the subroutine or function in whrch .
the PARSE statement is executed are parsed. Thisis '
equivalent to the operation of the REXX ARG funcflnn

- PARSE EXTERNAL

- REXX obtains the string to be parsed from the TSO sfuckw
which usually gets it from the TSO terminal. PARSE PULL hus’;
the same affect as this PARSE form and is used rnur*e. afi'en '

CCCCCCCCC ©2006 CA. All rights reserved. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies. m

Parse - Operands

- PARSE NUMERIC

- returns the current settings for the NUMERIC nph-uns 5
DIGITS, FUZZ, and FORM, in that order.

» PARSE PULL

- This form of the PARSE instruction makes REXX get the nex‘r
string from the REXX data stack. If the stack is empty, REXX ?
will get the string from TSO terminal.

PARSE VALUE

-~ this PARSE form parses a string under the control of The
parsing template, described previously.

Parse - Operands

PARSE SOURCE
parses data describing the source of the program running. The language
processor returns a string that is fixed (does not change) while the program is
running.

PARSE VAR name
parses the value of the variable name. The name must be a symbol that is valid
as a variable name (that is, it cannot start with a period or a digit). Note that the
variable name is not changed unless it appears in the template, so that for

PARSE VERSION
parses information describing the language level and the date of the language
processor. This information consists of five blank-delimited words:

Copyright ©2006 CA. All rights reserved. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies. -

Parse - ARG

- PARSE UPPER ARG [template]

- Parses the arguments passed to the program according to the
template, optionally first translating it to uppercase

- Shortened to - ARG

ARG test_word
SAY "¥You have passed the program : "test_word

Copyright ©2006 CA. All rights reserved. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies. -

Parse - VAR

+ Syntax
- PARSE VAR name [template]

ARG test_words

PARSE VAR test_words first_word second word left overs
SAY "You have passed the program : "first_word

SAY "You have passed the program : "second _word

SAY "You have passed the program : "left_overs

You have passed the program : THIS
You have passed the program IS
You have passed the program : A TEST OF WORDS

o o

LE]

Copyright ©2006 CA. All rights reserved. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies. m

Parse - PULL

+ Syntax
- PARSE PULL [template]

SAY "Please enter your first name."
PARSE PULL first_name

Copyright ©2006 CA. All rights reserved. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies. .

Parse — EXTERNAL

- Syntax
- PARSE EXTERNAL [template]

SAY "Please enter your first name."
PARSE EXTERNAL first_name

Copyright ©2006 CA. All rights reserved. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies. .

Parse - VALUE WITH

* Syntax
- PARSE VALUE [expression] WITH [template]

- Use VALUE WITH to break apart long strings or
expressions that need to be evaluated first

new_date = "12/11/2000"

PARSE VALUE new_date WITH mm "/" dd "/" vyyvy
SAY mm

SAY dd
SAY yYYY

Parse - Templates

- Simplest form consists of a list of variable names i F

et 45

«+ String being parsed is split into words
- each word is assigned to a variable from left to right

+ The last variable is assigned whatever is left.

name = "Mike Fred Bob Jones"

PARSE VALUE name WITH first_name left_overs
SAY first_name

SAY left_overs

Copyright ©2006 CA. All rights reserved. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies. -

Parse - Templates

+ If there are fewer words than variables, any remﬁmﬁﬁi
variables are assigned the null string.

+ Leading blanks are removed from each word.

name = "Mike"

PARSE VALUE name WITH first_name left_cvers
SAY first_name

SAY left_overs

eserved. All trademarks, trade names, services marks and logos refere!

Parse - Templates

+ Example - What happens here ? s

name = "Mike Fred Jones"

PARSE VAR name new_name name
SAY name

SAY new_name

Copyright ©2006 CA. All rights reserved. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies. .

Parse - Literal Paterns

- Example

names = "Mike,Fred, Joe"

PARSE VAR names one "," two "," three
SAY one

SAY two

SAY three

Mike
Fred

Joe
oy W

Copyright ©2006 CA. All rights reserved. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies. .

Parse — Using Placeholders

+ Example

names = "Mike,Fred,Joe"
PARSE VAR names . "," . "," last name
SAY last_name

Joe
W

Copyright ©2006 CA. All rights reserved. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies. .

Parse — Positional Paterns

+ Example

names = "Some text, to be, split up!"
PARSE VAR names cocne 10 two 20 three
SAY one

SAY two

SAY three

Some text
, to be, s
plit up!

W Ak

Copyright ©2006 CA. All rights reserved. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies. .

Parse — Relative Positional Paterns

e

A i e
b i

= *

| ._

P S R L

S

L)

Lot

+ Example i

names = "(0987654321"

PARSE VAR names 3 one +2 two +4 three Z four
SAY one

SAY two

SAY three

SAY four

87

6543

21
987654321

e

Parse — Sample Relative Positional Paterns

-\-c et

+ Simple using the relative column numbers relative 1& qu_”

literal.

names = "This is a list"

PARSE VAR names 1 one +1 two +1 three +1 four the_rest
SAY one

SAY two

SAY three

saY four

SAY the_rest

He 5 e

is a list

& & &

I‘ ™~ PR — 1 i —_—

Copyright ©2006 CA. All rights reserved. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

ik R o 1

Parse — Variable Paterns

» Specify a pattern by using the value of a variable mstaad' o
a fixed string number

* Place the name of the variable to be used as the pattern in
parentheses

- If a+, - or = sign precedes the parentheses, the value of ’rhe
vurlable is then used as though it were a relative culumn P
number’

name = "Mike"

PARSE VALUE name WITH first_name left_overs
SAY first_ _name

SAY left_overs

Parse — Variable Paterns Example

EXTH TR AT e P

data = "L/lock for /1 10"

FARSE VAR data verb 2 delim +1 string (delim) rest
SAY wverb

SAY delim

SAY string

SAY rest

Vi d

L

/

look for
1 10

¥ % W

Work Section 3.1

B A S e S

+ Write a REXX program to accept a name from the ..
execution line. B i

- Say hello to the name.

ex 'cles.iulc00.rexx(rx10131)* ‘bhob’

Hello bob

& ¥

Copyright ©2006 CA. All rights reserved. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies. .

Work Section 3.2

* Worite a REXX program to accept a 3 level qunhfled
dataset from the execution line.

+ Then display each section to the screen

ex 'CLCS.IULCO0.REXX(rx10132)' 'iulcO00.iulc.rexx'

Project : iulcO0
Group : iulc

Type ! rexx
* & &

Copyright ©2006 CA. All rights reserved. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies. .

Additional Programs

.-'.-I"-\.gd-' "'\. ;.

» If you had proceeding spaces in work section 1.2 ’rhen re—
write using PARSE to remove the spaces. |

3) Parsing

Instructions: PARSE, ARG,
Patterns.

Resources:TSO REXX Reference
Chapter 5. Parsing

This course has been prepared by Milos Forman for MCoE needs only!

1

PROPRIETARY AND CONFIDENTIAL INFORMATION

These education materials and related computer software program (hereinafter referred to as

the "Education Materials") is for the end user’s informational purposes only and is subject to
change or withdrawal by CA, Inc. at any time.

These Education Materials may not be copied, transferred, reproduced, disclosed or
distributed, in whole or in part, without the prior written consent of CA. These Education
Materials are proprietary information and a trade secret of CA. Title to these Education
Materials remains with CA, and these Education Materials are protected by the copyright laws
of the United States and international treaties. All authorized reproductions must be marked
with this legend.

RESTRICTED RIGHTS LEGEND

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION "AS
IS" WITHOUT WARRANTY OF ANY KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO THE END USER OR ANY THIRD
PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS
DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, BUSINESS
INTERRUPTION, GOODWILL OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED OF SUCH
LOSS OR DAMAGE.

THE USE OF ANY PRODUCT REFERENCED IN THIS DOCUMENTATION AND THIS
DOCUMENTATION IS GOVERNED BY THE END USER’S APPLICABLE LICENSE AGREEMENT.
The manufacturer of this documentation is CA, Inc.

Provided with "Restricted Rights" as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections
52.227-19(c)(1) and (2) or DFARS Section 252.227.7013(c)(1)(ii) or applicable successor
provisions.

Parse instruction

PARSE

»=—PARSE- —ARG
I—UPPERJ EXTERNAL
UMERIC
PULL-
SOURCE:

VA LUEﬁ—MTH—
Xpressio

VAR—name-
VERSION

Ltemplafe_l isa:J

PARSE assigns data (from varicus sources) to one or more variables according to
the rules of parsing (see Chapter 5, “Parsing,” on page 165).

The parse instruction is used to assign data from various sources to one
or more variables.

See description on next slide.

Parse instruction

The PARSE instruction tells REXX how to assign data to one or more
variables. The data to assign can be from the terminal, the data stack, or from
arguments passed to a subroutine or function. The way in which REXX
assigns data to a variable is governed by what is known as a ‘parsing
template’, discussed below.

‘template’ is made up of alternating optional "patterns” and variable names.
"patterns” are of two types: those that cause parsing to search for a matching
string (variable patterns and literal patterns) and numeric patterns that supply
a string position number in the data from which parsing is to extract data.
Any number of "patterns" and

variables can be intermixed.

Parse - Operands

PARSE UPPER

- tells REXX to translate the data to be parsed to uppercase
before parsing is done. Without the UPPER option, no
uppercase translation is done before or after parsing.

PARSE ARG :

- The arguments passed to the subroutine or function in Wthh"?’=
the PARSE statement is executed are parsed. Thisis

equivalent to the operation of the REXX ARG function.

PARSE EXTERNAL

- REXX obtains the string to be parsed from the TSO stacl
which usually gets it from the TSO terminal. PARSE PULL
the same affect as this PARSE form and is used more oﬂ'

PARSE assigns data from various sources to one or more variables
according to the rules of parsing.

PARSE ARG parses the string passed to a program or internal routine
as input arguments.

PARSE EXTERNAL |If you can, use PARSE PULL instead of PARSE
EXTERNAL.

Invoke the example from option 6 COMMAND:
exec ,mcoe.rexa.rexx(rx20133)' 'Passed argument,

Parse - Operands

PARSE NUMERIC

- returns the current settings for the NUMERIC OPTIO!'IS
DIGITS, FUZZ, and FORM, in that order.

« PARSE PULL

- This form of the PARSE instruction makes REXX get the nex‘r
string from the REXX data stack. If the stack is empty, REXX f
will get the string from TSO terminal.

PARSE VALUE

- this PARSE form parses a string under the control of the
parsing template, described previously.

PARSE NUMERIC returns the current settings for the NUMERIC
options DIGITS, FUZZ, and FORM.

PARSE PULL parses the next string from the external data queue. If
the external data queue is empty, PARSE PULL reads a line from the
default input stream - the user’s terminal.

PARSE VALUE parses the data that is the result of evaluating
expression.

See ,MCOE.REXA.REXX(RX20134),

Parse - Operands

PARSE SOURCE
parses data describing the source of the program running. The language
processor returns a string that is fixed (does not change) while the program is
running.

PARSE VAR name
parses the value of the variable name. The name must be a symbol that is valid
as a variable name (that is, it cannot start with a period or a digit). Note that the
variable name is not changed unless it appears in the template, so that for

PARSE VERSION
parses information describing the language level and the date of the language
processor. This information consists of five blank-delimited words:

PARSE SOURCE parses data describing the source of the program
running.

The source string contains the following tokens:

1. The characters TSO.

2. The string COMMAND, FUNCTION, or SUBROUTINE.
3. Usually, name of the exec in uppercase.

4. Name of the DD from which the exec was loaded.

5. Name of the data set from which the exec was loaded.
6. Name of the exec as it was called.

And some others. | have never used it.

PARSE VAR name parses the value of the variable name.

PARSE VERSION parses information describing the language level and
the date of the language processor.

Parse - ARG

Syntax
- PARSE UPPER ARG [template]

Parses the arguments passed to the program according to the
template, optionally first translating it to uppercase

« Shortened to - ARG

ARG test_word
SAY "You have passed the program : "test_word

Parse - VAR

+ Syntax
- PARSE VAR name [template]

ARG test_words

PARSE VAR test_words first_word second_word left_overs
SAY "You have passed the program : "first_word

SAY "You have passed the program : "second_word .
SAY "You have passed the program : "left_overs il

You have passed the program : THIS
You have passed the program : IS
You have passed the program : A TEST OF WORDS

e e e

Invoke the example from option 6 COMMAND:
exec ,mcoe.rexa.rexx(rx20136)' 'This is a test of words,

Parse - PULL

Syntax
- PARSE PULL [template]

SAY "Please enter your first name."
PARSE PULL first_name

10

You can use similar instruction PULL (instead of PARSE PULL), which
translates string to uppercase.

10

Parse — EXTERNAL

Syntax
- PARSE EXTERNAL [template]

SAY "Please enter your first name."
PARSE EXTERNAL first_name

11

TSO and VM environments ONLY. It is recommended to use PARSE
PULL instead of PARSE EXTERNAL.

11

Parse - VALUE WITH

Syntax
- PARSE VALUE [expression] WITH [template]

Use VALUE WITH to break apart long strings or
expressions that need to be evaluated first

new_date = "12/11/2000"

PARSE VALUE new_date WITH mm "/" dd "/" yyvy
SAY mm

SAY dd
SAY yyyy

12

See ‘MCOE.REXA.REXX(RX20139)’

12

Parse - Templates

- Simplest form consists of a list of variable names

String being parsed is split into words
each word is assigned to a variable from left to right

The last variable is assigned whatever is left.

name = "Mike Fred Bob Jones"

PARSE VALUE name WITH first_name left_overs
SAY first_name

SAY left_overs

13

13

Parse - Templates

. If there are fewer words than variables, any remaining

variables are assigned the null string.

+ Leading blanks are removed from each word.

name = "Mike"

PARSE VALUE name WITH first_name left cvers
SAY first_name

SAY left_overs

14

Parse - Templates

* Example - What happens here ?

name = "Mike Fred Jones"
PARSE VAR name new_name name
SAY nams

SAY new_name

15

PARSE VAR name parses the value of the variable name, so for
example:

PARSE VAR name new_name name

removes the first word from name, puts it in the variable new_name, and
assigns the remainder back to name.

So the output from the example is:

Fred Jones
Mike

15

Parse — Literal Paterns

Example

names = "Mike,Fred,Jce"

PARSE VAR names one "," two *," three
SAY one

SAY two

SAY three

Mike
Fred

Joe
* e

16

PARSE VAR names parses the value of the variable names, so for
example:

PARSE VAR names one “’ two “~ three

removes the first word from names, puts it in the variable one, and

assigns the remainder back to names and similarly for the rest of names
variable.

16

Parse — Using Placeholders

Example

names = "Mike,Fred,Joe"
PARSE VAR names . "," .

SAY last_name

"
’

* last_name

Joe
*wE

17

Parse — Positional Paterns

Example

names = "Some text, to be, split up!"
PARSE VAR names one 10 two 20 three
SAY one

SAY two

SAY three

Some text
, to be, s
plit up!

d A

18

Digits 10 and 20 indicate a starting column.

See ‘MCOE.REXA.REXX(RX201315)’

18

Parse — Relative Positional Paterns

+ Example

names = "0987654321"

PARSE VAR names 3 one +2 two +4 three Z four
SAY one

SAY two

SAY three

saY four

87

6543

21
987654321

e e e

19

Digits 3 and 2 indicate a starting column.
Digits +2 and +4 indicate relative starting column.

Parse — Sample Relative Positional Paterns

i

+ Simple using the relative column numbers relative to
literal.

names = "This is a list"

PARSE VAR names 1 one +1 two +1 three +1 four the_rest
SAY one

SAY two

SAY three

SAY four

SAY the_rest

= |

is a list
—_—

=/

[—

Write it and test it.

20

Parse — Variable Paterns

- Specify a pattern by using the value of a variable ms1'
a fixed string number :

* Place the name of the variable to be used as the pattern in
parentheses

- Ifa+, -or= signprecedes the parentheses, the value of th
variable is then used as though it were a relative column
number’ -

name = "Mike"

PARSE VALUE name WITH first_name left_overs
SAY first_name

SAY left_overs

- N

21

It was discussed on slides 12 and 13.

21

Parse — Variable Paterns Example

S AR o e

data = "L/look for /1 10"

PARSE VAR data verb 2 delim +1 string (delim} rest
SAY wverb

SAY delim

SAY string

SAY rest

L

/

look for
1 10

EE L

22

We discussed it before.

22

Work Section 3.1

+ Write a REXX program to accept a name from the. .

execution line,

Say hello to the name.

ex ‘clcs.iulc00.rexx(rx10131)’ ‘'bob’

Hello bob

&kt

23

Invoke the program from option 6 COMMAND

23

Work Section 3.2

* Write a REXX program to accept a 3 level qualified
dataset from the execution line.

+ Then display each section to the screen

ex 'CLCS.IULCO0.REXX(rx10132)' 'iulc00.iulc.rexx'

Project : iulcO0
Group : iulc

Type : rexx
ok k

5
e A R e

24

Invoke the program from option 6 COMMAND

24

Additional Programs

If you had proceeding spaces in work section 1.2 ’rhe\ re,-.%

write using PARSE 1o remove the spaces.

25

25

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

