
JCL

 Chapter c4
Sample utility application

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Job Control Language

Chapter a1. Introduction to JCL

Chapter a2. Coding JOB statements

Chapter a3. Coding EXEC statements

Chapter a4. Coding DD statements

Chapter a5. Analyzing job output

Chapter a6. Conditional processing

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Job Control Language

Chapter b1. Using special DD statements

Chapter b2. Introducing procedures

Chapter b3. Modifying EXEC parameters

Chapter b4. Modifying DD parameters

Chapter b5. Determining the effective JCL

Chapter b6. Symbolic parameters

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Job Control Language

Chapter c1. Nested procedures

Chapter c2. Cataloging procedures

Chapter c3. Using utility programs

Chapter c4. Sample utility application

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Sample utility application.

Chapter c4

Sample utility application

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Sample utility application.

Unit introduction.

This unit analyzes examples of typical processing tasks that can be
accomplished with utilities.

Although available utilities, required JCL, and control statements
will vary with different installations, this unit provides a sampling
of the tasks that utilities can perform.

The material also introduces a process that can be applied in
choosing and executing any utility for processing needs.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Sample utility application.

Course objectives.

Be able to:

• Determine the job stream.

• Print sequential data sets.

• Maintain source libraries.

• List PDS directories.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Determining the job stream.

Determining the job stream.

Utility programs can be used in a variety of situations to provide
the processing required.

How to determine job streams?

An effective method for determining the job stream that will
accomplish the necessary processing is as follows:

1. Use the Utilities Manual table to find the utility that may be
appropriate to accomplish the task.

2. Once an appropriate utility or utilities is selected, read the
chapters of the Utilities Manual that describe the utility in
detail.

3. Look for an example that approximates the processing
requirements in the Utilities Manual. Modify the example (as
needed) to accomplish the task.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Determining the job stream.

Determining the job stream.

In some cases, more than one utility will provide the processing required. Select
any one of the utilities that will do the job. The table below provides a list of
utilities that may be used to process a job/task.

JOB UTILITIES

Change data set organization IEBGENER, IEBUPDTE, IEBPTPCH

Convert to sequential data set IEBGENER, IEBUPDTE

Copy a partitioned data set IEBCOPY

Copy a sequential data set IEBGENER, IEBUPDTE, IEBPTPCH

Create a sequential output data set IEBDG, IEBGENER, IEBPTPCH

Edit and copy a sequential data set IEBGENER, IEBUPDTE, IEBPTPCH

Merge partitioned data sets IEBCOPY

Replace selected members of a PDSE IEBCOPY, IEBUPDTE

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Determining the job stream.

Are we on track?

Put the following steps in order to reflect the suggested method of
selecting and executing a utility program:

A. Find an appropriate example application.

B. Look up a utility that will perform the task.

C. Read the chapter that describes the utility.

D. Modify the code in the example as needed.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Print sequential data sets.

Selecting a utility.

How to select a utility?

Assume you need to list the contents

of a data set in order to determine

what it contains. The data set

resides on a tape volume, as shown

on the right. In this case, consider

the following:

1. The need to print the contents

of a data set.

2. The data set resides on a tape

volume, which implies a sequential

data set.

SEQUENTIAL DATA SET

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Print sequential data sets.

Kinds of utilities.

The utilities available to print data
sets are as follows:

• IEBGENER – useful when you want
to copy, edit, or print the contents of
a sequential data set.

• IEBUPDTE – can be used to create
and modify PDS members.

• IEBPTPCH – can also be used to
print the contents of a data set.

IEBGENERIEBGENER IEBPTPCHIEBPTPCH

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Print sequential data sets.

IEBPTPCH output.

IEBPTCH has a unique output format. The data set in the example would print as

shown above.

LABEL OPERATOR OPERANDS
START 0
SAVE (1
BALR 12
USING *,
LA 1,
ST 13
ST 1,
LR 13
EXTRACTT
MVC O
WTO MF
L 13
RETURN(1
LTORG
DS 9D
DS F
WTO '
EQU O
END

BEGIN

SAVE
TIOTAD
OUTLINE
OUTMSG

4,12),,
,0
12
SAVE
,4(1)
8(13)
,1
IOTAD,
UTMSG,0(
=(E,OUTL
,4(13)
4,12

THIS IS
UTLINE+1

TESTPROG

FIELDS=T
1)
INE)

JOB XXXX
6,8

RAM

IOT

XXXX',
MG =L

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Print sequential data sets.

Are we on track?

The ______________ utility is useful when you want to copy, edit,
or print the contents of a sequential data set.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Print sequential data sets.

JCL statements for IEBGENER.

The JCL statements required for IEBGENER, as shown above, are:

JOB – It identifies the job to the operating system.

EXEC – It specifies that the IEBGENER should be executed.

SYSPRINT – It indicates that the messages generated by IEBGENER are to be
directed to a printer.

SYSIN – It is necessary for IEBGENER. However, this example does not require
control statements, so the SYSIN statement specifies DUMMY.

SYSUT1 – It identifies the input data set.

SYSUT2 – It specifies the output data set of the PRINT operation.

//PRINT JOB
//STEP1 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=A
//SYSIN DD DUMMY
//SYSUT1 DD DDNAME=MYDATA,DISP=OLD,UNIT=TAPE,VOL=SER=112233
//SYSUT2 DD SYSOUT=A

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Print sequential data sets.

Are we on track?

Complete the following SYSIN statement to indicate that no utility
control statements are required to process a job using a utility:

//SYSIN DD ______________

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Print sequential data sets.

Are we on track?

For this programming exercise, assume you want to copy an in-
stream input, sequential data set to a tape volume. Using
IEBGENER complete the JCL statements on the screen as follows:

In line 1, execute IEBGENER.
In line 2, create an output tape data set named TSTTAPE.
In line 4, specify that the output records are 80 characters,
 blocked 40 records per block. The record format is FB.
In line 5, create utility messages in SYSOUT class A.

 //jobname JOB
1. //STEPNAME EXEC ___________
2. //SYSUT2 DD DSN=________
3. // VOL=SER=123456,UNIT=TAPE,
4. // DCB=(RECFM=FB,_________
5. //SYSPRINT DD ___________
6. //SYSIN DD DUMMY
7. //SYSUT1 DD *
 in-stream data
 /*

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Maintaining source libraries.

IEBUPDTE program.

The IEBUPDTE (Update Data Set)
program can be used to create or
modify sequential data sets or PDSs
or PDSEs.

Why use IEBUPDTE?

IEBUPDTE is used primarily for
updating procedure, source and
macro libraries.

For the next example, assume a
procedure requires to be stored in a
procedure library and assign a
sequence number to each created
record.

PROC LIBRARY

PROCA

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Maintaining source libraries.

IEBUPDTE program – an example.

Assume the processing requirements are
as follows:

• The procedure will be entered in the job
stream.

• The output data set is a procedure
library named SYS1.PROCLIB.

• The new member will be named
MYPROC1.

• A unique sequence number should be
given to each record of the output
member. The starting sequence number
is to be 10 and the numbers should be
incremented by 10.

• Each record should be listed as it is
added to the PDS.

SYS1.PROCLIB

MYPROC1

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Maintaining source libraries.

General form for IEBUPDTE.

The example on the right shows the
general form for IEBUPDTE.

When adding a new member to an
existing PDS, specify PARM=NEW on
the EXEC statement invoking
IEBUPDTE.

PARM=MOD would indicate that the
output data set existed and has to be
modified. MOD is the default if PARM
is omitted.

JCL for IEBUPDTE:

//stepname EXEC PGM=IEBUPDTE,
// PARM=NEW
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD …
//SYSUT2 DD …
//SYSIN DD *

(Control Statements)

/*

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Maintaining source libraries.

Updating a source library.

The JCL on the screen is used to
update an existing library.

The SYSUT1 DD statement defines
the PDS to be updated, and the
SYSUT2 DD statement defines the
PDS after it is updated.

The data set defined by these two
DD statements is the same. Only its
content is changed by the utility.

JCL for IEBUPDTE:

//STEPNAME EXEC PGM=IEBUPDTE,
// PARM=NEW
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSN=SYS1.PROCLIB,
// DISP=OLD
//SYSUT2 DD DSN=SYS1.PROCLIB,
// DISP=OLD
//SYSIN DD *
(Control Statements)
/*

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Maintaining source libraries.

Are we on track?

Code an EXEC statement below to:

Execute IEBUPDTE

Specify that an existing data set is to be altered:

//JOBSTEP EXEC ______________

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Maintaining source libraries.

Maintaining source libraries.

IEBUPDTE uses special utility control
statements with the ./ characters in
positions 1 and 2. These two characters
distinguish the control statements from
the input program that is also in the job
stream.

The following control statements are
required:

./ ADD indicates that a new member is
to be added to the PDS.

LIST=ALL is an option to list the entire
member on SYSPRINT.

NAME=names the newly created member
is a procedure MYPROC1.

Utility control statements for IEBUPDTE:

//SYSIN DD *
./ ADD LIST=ALL,NAME=MYPROC1
./ NUMBER NEW1=10,INCR=10

 -procedure being added-

./ ENDUP
/*

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Maintaining source libraries.

Maintainig source libraries.

./ NUMBER indicates that the new
procedure is to be assigned
sequence numbers.

NEW1= specifies the first sequence
number (in this case, 10).

INCR=10 indicates that the records
will be assigned sequence numbers
in increments of 10 (10, 20,etc).

./ ENDUP marks the end of the
member being added.

Utility control statements for IEBUPDTE:

//SYSIN DD *
./ ADD LIST=ALL,NAME=MYPROC1
./ NUMBER NEW1=10,INCR=10

.

.

.
./ ENDUP
/*

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Maintaining source libraries.

Maintaining source libraries.

The example on the right shows the
job stream needed for these
processing requirements.

Notice that the characters ./ in the
control statements begin in column
1.

//stepname EXEC PGM=IEBUPDTE,
// PARM=MOD
//SYSUT1 DD DSN=SYS1.PROCLIB,
// DISP=OLD
//SYSIN DD *
./ ADD LIST=ALL,NAME=MYPROC1
./ NUMBER NEW1=10,INCR=10
 -procedure being added-
./ ENDUP
/*
//SYSPRINT DD SYSOUT=A

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Maintaining source libraries.

Maintaining source libraries.

In the previous example, a new member
was added to an existing PDS.

If you changed the requirements to add a
new member to a new PDS, the job
stream would look like the screen on the
right.

The output data set is ASM.SOURCLIB
and the output member is named
MYPGM1. In this case:

• PARM=NEW is on the EXEC statement.
This specifies a new master data set.

• When creating a PDS, no //SYSUT1 DD
is needed.

• The new partitioned master is defined
on the SYSUT2 statement.

//stepname EXEC PGM=IEBUPDTE,
// PARM=NEW
//SYSUT2 DD DSN=ASM.SOURCELIB,
// DISP=(NEW,KEEP),
// UNIT=…,VOL=SER=…,
// SPACE=(…,(…,…,…))
//SYSIN DD *
./ ADD LIST=ALL,NAME=MYPGM1
./ NUMBER NEW1=10,INCR=10
 -source program-
./ ENDUP
/*

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Maintaining source libraries.

Maintaining source libraries.

IEBUPDTE can be used to add (./ ADD) modify (./ CHANGE), or
replace (./ REPL) members in a PDS, depending on the control
statements used.

./ ADD precedes and names a member or data set to be added.
The general form is as follows:

./ ADD NAME=member, LIST=ALL

./ CHANGE is used when deleting, numbering or adding data in a
member or data set. It is followed by DELETE, NUMBER or data
statements.

./ REPL precedes a member to replace an existing member in the
SYSUT2 data set.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Maintaining source libraries.

Are we on track?

Match the IEBUPDTE utility control statement with its function:

 ./ ADD A. Precedes and names a member or a data
 set to be added to the SYSUT2 data set.

 ./ REPL B. Precedes a member to replace an existing
 member in the SYSUT2 PDS.

 ./ NUMBER C. Indicates modifications to a member of a
 PDS.

 ./ CHANGE D. Indicates that portions of a member are to
 be numbered.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Maintaining source libraries.

Are we on track?

Assume you have the following records in a member named
PAYROLL in a PDS named MYSOURCE:

123 J.SMITH DEPT.49 00000010
146 J.DOE DEPT.98 00000020
987 H.BROWN DEPT.012 00000030
993 J.HORNER DEPT.23 00000040

Complete the data statement so that the IEBUPDTE will alter
PAYROLL to include the following. Assume there are no spaces
between the fields.
987 H.BROWN DEPT.911 00000030

// EXEC PGM=IEBUPDTE,PARM=MOD . . .
//SYSIN DD *
./ CHANGE NAME=PAYROLL,LIST=ALL 987 _____________
./ ENDUP
/*

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Listing PDS directories.

Listing PDS directories.

The final utility application concerns
printing the contents of a PDS directory.

Why is IEHLIST utility important?

The listing helps determine which
member names are already in the PDS.

The IEHLIST (List System Data) utility
can:

• List the entries in a PDS directory.

• List the Volume Table of Contents
(VTOC) of direct-access volumes.

Partitioned Data Set

 1 0
0 1

JOB

 1 0
0 1

 1 0
0 1

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Listing PDS directories.

Listing PDS directories.

When using IEHLIST, use the SYSIN
and SYSPRINT DD statements.

However, the user can create a
DDNAME for the DD statement that
defines the volume to be processed.

The purpose of this DD statement is
to provide enough information for
the system to find and allocate the
volume.

JCL for IEHLIST:

//stepname EXEC PGM=IEHLIST
//SYSPRINT DD SYSOUT=A
//DDname DD UNIT=device,
// VOL=SER=volume,
// DISP=OLD
//SYSIN DD *
-control statements-
/*

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Listing PDS directories.

Listing PDS directories.

For IEHLIST, use a utility control statement to specify the data set’s name, rather
than coding it on the DD statement. The control statement also indicates the unit
type and volume serial number of the data set.

LISTPDS requests a listing of one or more partitioned data sets or PDSEs.

The general form and example are shown above. The user must know the data set’s
complete name and volume location. The utility cannot refer to JCL or catalog
information.

LISTPDS

LISTPDS

DSNAME=name,VOL=device=serial

DSNAME=ASM.SOURCELIB,VOL=SYSSA=112457

Label
 field

Operation
 field

Operand
 field

Data set name Unit Volume

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Listing PDS directories.

Listing PDS directories – an example.

The complete job stream to list the
PDS directory is illustrated on the
right.

This example uses the ddname
ANYDD1. The ANYDD1 DD identifies
the directory listing function to be
performed, and the name of the data
set whose directory needs to be
listed.

Job Stream:

//stepname EXEC PGM=IEHLIST
//SYSPRINT DD SYSOUT=A
//ANYDD1 DD UNIT=SYSDA,
// VOL=SER=112457,
// DISP=OLD
//SYSIN DD *
 LISTPDS DSNAME=ASM.SOURCELIB,
 VOL=SYSDA=112457
/*

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Listing PDS directories.

Listing Volume Table Of Contents – an example.

One other control statement is often used with the IEHLIST utility. LISTVTOC
requests a listing of all or part of a volume table of contents.

The example above would list the volume table of contents of DASD volume
112457, using a unit designation of SYSDA. The FORMAT option lists the VTOC in
edited form.

LISTVTOC

LISTVTOC

VOL=device=serial,option,. . .

VOL=SYSDA=112457,FORMAT

Label
 field

Operation
 field

Operand
 field

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Listing PDS directories.

Are we on track?

With the IEHLIST utility, the data set name, volume serial number,
and unit type are given on the _________ control statement.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Listing PDS directories.

Are we on track?

Assume that you want to print the VTOC on direct access volume
987654. You will use a unit designation of DASD.

Code the JCL DD statement required to identify the volume. Use
DISP=OLD.

//STEPNAME EXEC PGM=IEHLIST
//ANYDD DD VOL=SER=987654
// _______________
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

Code the utility control statement required with IEHLIST to
request a listing of a VTOC. Specify that the VTOC is to be listed in
edited form.

 LISTVTOC _________________
/*

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Listing PDS directories.

Glossary.

LISTPDS
An IEHLIST control statement that lists the directory of a
partitioned data set.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

IEBCOPY Library copy program.

IEBCOPY Library copy program.

IEBCOPY is a data set utility that is used to copy or merge
members between one or more PDSs, or PDSEs, in full or in part.
You can also use IEBCOPY to create a backup of a PDS into a
sequential data set (called an unload data set or PDSU), and to
copy members from the backup into a PDS.

You can use IEBCOPY to perform the following tasks:

• Make a copy of a PDS or PDSE.
• Merge PDSs.
• Create a sequential form of a PDS or PDSE for a backup or transport.
• Reload one or more members from a PDSU into a PDS or PDSE.
• Replace members of a PDS or PDSE.
• Rename selected members of a PDS or PDSE when copied.
• Exclude members from a data set to be copied, unloaded, or loaded.
• Compress a PDS in place.
• Upgrade a load module for faster loading by MVS program fetch.
• Copy and reblock load modules.
• Convert a PDS to a PDSE or a PDSE to a PDS.
• and many others...

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

IEBCOPY Library copy program.

Converting PDSs to PDSEs.

You can use IEBCOPY to convert partitioned data sets to PDSEs.

To convert a PDS to a PDSE, create a PDSE and copy the PDS into
the new PDSE. This can be accomplished with one use of IEBCOPY.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

IEBCOPY Library copy program.

Copying data sets.

IEBCOPY can be used to totally or partially copy a PDS from one
DASD to another. In addition, a data set can be copied to its own
volume, provided its data set name is changed. (If the data set
name is not changed, IEBCOPY interprets the request as a
compress-in-place.)

Members copied into a PDS are not physically reordered; members
are copied in the physical order in which they occur in the original
data set.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

IEBCOPY Library copy program.

Merging data sets.

Merging data sets is done by copying or loading the additional
members to an existing PDS. The merge operation (ordering of the
directory of the output data set) is automatically performed by
IEBCOPY.

Increasing Directory Space for a PDS
IEBCOPY cannot increase the number of directory blocks in a PDS.
(A PDSE directory automatically expands as needed.) If you are
not sure there will be enough directory blocks in the output PDS
you are merging to, then you should expand the output data set
directory space before beginning the merge operation.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

IEBCOPY Library copy program.

Unloading (backing up) data sets.

IEBCOPY can be used to create a backup copy of a PDS by copying
(unloading) it to a sequential data set on DASD, tape, or other
device supported by QSAM.

IEBCOPY creates an unload data set when you specify physical
sequential organization (DSORG=PS) for the output data set. To
create a PDS, specify DSORG=PO and DSNTYPE=PDS or
DSNTYPE=LIBRARY.

To unload more than one PDS to the same tape volume in one
execution of IEBCOPY, multiple copy operations must be used and
multiple sequential data sets must be allocated to successive files
on the tape.

The PDSE directory can contain attributes in addition to those
traditionally kept in a PDS directory entry.
Some PDSE extended attributes are recorded on an unload data
set and will be reloaded when the target is a PDSE.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

IEBCOPY Library copy program.

Job control statements.

Statement Use

JOB Starts the job.
EXEC Starts IEBCOPY.
SYSPRINT DD Defines a sequential data set used for listing control

statements and messages.
SYSUT1 or
anyname1 DD Defines a PDS or unload data set for input.
SYSUT2 or
anyname2 DD Defines a PDS or unload data set for output.
SYSUT3 DD Defines a spill data set on a DASD or VIO device. SYSUT3

is used when there is no space in virtual storage for some
input data set directory entries.

SYSUT4 DD Defines a spill data set on a DASD or VIO device. SYSUT4
is used when there is no space in virtual storage for the
output data set directory.

SYSIN DD Defines the optional control data set.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

IEBCOPY Library copy program.

Utility control statements.

Statement Use

ALTERMOD Indicates the beginning of an alter-in-place operation for
load modules.

COPY Indicates the beginning of a COPY operation.
COPYGRP Indicates the beginning of a COPYGRP operation.
COPYMOD Indicates the beginning of a copy and load module reblock

operation.
INDD= Indicates the beginning of another copy step.
EXCLUDE Specifies members in the input data set to be excluded

from the copy step.
SELECT Specifies which members in the input data set are to be

copied.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

IEBCOPY Library copy program.

Example 1 – Copy an entire data set.

In this example, a PDS (DATASET5) is copied from one disk
volume to another.

//COPY JOB ...
//JOBSTEP EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=DATASET5,UNIT=disk,VOL=SER=111113,DISP=SHR
//SYSUT2 DD DSNAME=DATASET4,UNIT=disk,VOL=SER=111112,
// DISP=(NEW,KEEP),SPACE=(TRK,(5,1,2))

The control statements are discussed below:

• SYSUT1 DD defines a PDS, DATASET5, that contains two
members (A and C).

• SYSUT2 DD defines a new PDS, DATASET4, that is to be kept
after the copy operation. Five tracks are allocated for the data set; two blocks are
allocated for directory entries.

• Because the PDS has only two members, SYSUT3 and SYSUT4
DD are not needed.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

IEBCOPY Library copy program.

Example 2 – Merge four data sets.

In this example, members are copied from three input PDSs
(DATASET1, DATASET5, and DATASET6) to an existing output PDS
(DATASET2). The sequence in which the control statements occur
controls the manner and sequence in which PDSs are processed.

//COPY JOB ...
//JOBSTEP EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=A
//IN1 DD DSN=DATASET1,UNIT=disk,VOL=SER=111112,DISP=SHR
//IN5 DD DSN=DATASET5,UNIT=disk,VOL=SER=111114,DISP=OLD
//IN6 DD DSN=DATASET6,UNIT=disk,VOL=SER=111117,DISP=(OLD,DELETE)
//OUT2 DD DSN=DATASET2,UNIT=disk,VOL=SER=111115,DISP=(OLD,KEEP)
//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(1))
//SYSIN DD *
 COPYOPER COPY INDD=IN1
 INDD=IN5
 INDD=IN6
 OUTDD=OUT2
/*

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

IEBCOPY Library copy program.

Example 2 – Merge four data sets.

The control statements are discussed below:

• IN1 DD defines a PDS (DATASET1). This data set contains three members (A, B,
and F).
• IN5 DD defines a PDS (DATASET5). This data set contains two members (A and
C).
• OUT2 DD defines a PDS (DATASET2). This data set contains two members (C and
E).
• IN6 DD defines a PDS (DATASET6). This data set contains three members (B, C,
and D). This data set is to be deleted when processing is completed.
• SYSUT3 defines a temporary spill data set.
• SYSIN DD defines the control data set, which follows in the input stream. The data
set contains a COPY statement and three INDD statements.
• COPY indicates the start of the copy operation. The OUTDD parameter specifies
DATASET2 as the output data set.
• The first INDD statement specifies DATASET1 as the first input data set to be
processed. All members (A, B and F) are copied to DATASET2.
• The second INDD statement specifies DATASET6 as the second input data set to
be processed.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

IEBCOPY Library copy program.

Example 3 – Unload and compress a data set.

In this example, a PDS is unloaded to a tape volume to create a
backup copy of the data set. If this step is successful, the PDS is to
be compressed in place.

//SAVE JOB ...
//STEP1 EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSN=PARTPDS,UNIT=disk,VOL=SER=PCP001,DISP=OLD
//SYSUT2 DD DSN=SAVDATA,UNIT=tape,VOL=SER=TAPE03,DISP=(NEW,KEEP),
// LABEL=(,SL)
//SYSUT3 DD DSN=TEMP1,UNIT=disk,VOL=SER=111111,DISP=(NEW,DELETE),
// SPACE=(80,(60,45))
//SYSIN DD DUMMY
//STEP2 EXEC PGM=IEBCOPY,COND=(0,NE),PARM=’SIZE=500K’
//SYSPRINT DD SYSOUT=A
//COMPDS DD DSN=PARTPDS,UNIT=disk,DISP=OLD,VOL=SER=PCP001
//SYSUT3 DD DSN=TEMPA,UNIT=disk,VOL=SER=111111,DISP=(NEW,DELETE),
// SPACE=(80,(60,45))
//SYSIN DD *
 COPY OUTDD=COMPDS,INDD=COMPDS
/*

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

IEBCOPY Library copy program.

Example 3 – Unload and compress a data set.

The control statements are discussed below:

• SYSUT1 DD defines a PDS (PARTPDS) that resides on a disk volume and is
assumed to have 700 members.The number of members is used to calculate the
space allocation on SYSUT3.
• SYSUT2 DD defines a sequential data set to hold PARTPDS in unloaded form. This
data set must be NEW.
• SYSUT3 DD defines the temporary spill data set.
• SYSIN DD defines the control data set. Because SYSIN is dummied and
SYSUT2 defines a sequential data set, all members of the SYSUT1 data set will be
unloaded to the SYSUT2 data set.
• The second EXEC statement marks the beginning of the compress-in-place
operation.
• COMPDS DD defines a PDS (PARTPDS).
• SYSUT3 DD defines the temporary spill data set to be used if there is not
enough space in main storage for the input data set’s directory entries.
• SYSIN DD defines the control data set, which follows in the input stream.
• COPY marks the beginning of the copy operation. Because the same DD
statement is specified for both the INDD and OUTDD operands, the data set is
compressed in place.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

IEBCOPY Library copy program.

Example 4 – Convert a PDS to a PDSE.

In this example, a PDS is converted to a PDSE.

//CONVERT JOB ...
//STEP1 EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSN=PDSSET,DISP=SHR,DSNTYPE=PDS
//SYSUT2 DD DSN=PDSESET,LIKE=PDSSET,DSNTYPE=LIBRARY,
// DISP=(NEW,CATLG),STORCLAS=SCLASX,DATACLAS=DCLASY

The control statements are discussed below:

• SYSUT1 DD defines the input PDS. The DSNTYPE keyword has no effect because it
is an existing data set.
• SYSUT2 DD defines the output PDSE. This new data set will be SMS-managed
because it has a storage class. The LIKE parameter indicates that the DCB and
SPACE attributes for PDSESET are to be copied from PDSSET. The DSNTYPE
parameter defines the new data set as a PDSE rather than as a PDS.
DATACLAS=DCLASY identifies the PPDSE as a program object PDSE with undefined
logical record length. The SMS chooses an appropriate volume for the allocation,
based on how SCLASX was defined.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data facility data set services – DFDSS.

DFDSS utility.

This program is the primary disk dump and restore program
provided with z/OS. It is capable of filtering and selecting which
data sets to dump or restore, but it is intended more to operate on
all data sets in a volume or all data sets having some SMS
management class rather than on individual data sets.

The purpose of dumping a disk is usually to provide a backup of
the contents that can be restored, if needed. A common use is to
dump complete volumes but restore only a specific data set that
was accidentally destroyed.

A backup is usually written to tape, but can be written to a disk
data set. A disk can be dumped track-by-track (known as a
physical dump) or data set-by-data set (known as a logical dump).
When a logical dump is performed, multiple data set extents may
be combined into a single extent, PDSs are compressed, and free
space is all in a single extent.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data facility data set services - DFDSS.

DFDSS utility.

You can use DFDSS interactively from a terminal similar to the way
ISPF is used (using Interactive Storage Management Facility –
ISMF), or you can invoke it through JCL.

DFDSS provides several facilities not in the other utility programs,
such as releasing unused space in data sets, combining data set
extents , consolidating free space on volumes, and backing up and
restoring data sets.

DFDSS can convert data sets to be SMS-managed data sets. It is
intended more for site management than for individual application
programmer.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data facility data set services - DFDSS.

BUILDSA command.

The BUILDSA function builds the IPL-able core image under the
current operating system.

Use the BUILDSA command to build the IPL-able core image for
the Stand-Alone Services program. You can specify the device
(card reader, tape drive, or DASD volume) from which Stand-Alone
Services will be IPLed.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data facility data set services - DFDSS.

BUILDSA command – an example.

Core Image for IPL from Tape

In this example, Stand-Alone Services is created for IPLing in
stand-alone mode from a tape. The core image is then placed on
an unlabeled tape.

//BUILDSA JOB accounting information,REGION=nnnnK
//STEP1 EXEC PGM=ADRDSSU,PARM=’UTILMSG=YES’
//SAMODS DD DSN=SYS1.SADRYLIB,DISP=SHR
//TAPEDD DD DSN=ADRSA.IPLT,UNIT=3480,LABEL=(,NL),
// DISP=(NEW,KEEP),VOL=SER=TAPE01,
// DCB=(DSORG=PS,RECFM=U,BLKSIZE=32760,LRECL=32760)
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
 BUILDSA –
 INDD(SAMODS) –
 OUTDD(TAPEDD) –
 IPL(TAPE)
/*

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data facility data set services - DFDSS.

COMPRESS command.

The COMPRESS command compresses PDSs on a specified volume.
Compressing (degassing) removes unused space between
members in a PDS. This command is useful for compressing
system PDSs before you apply maintenance (to avoid certain
space-related abends).

Restriction: You must not compress data sets that contain
DFSMSdss or IEBCOPY executable code.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data facility data set services - DFDSS.

COMPRESS command – an example.

Example of Compress Operations

The following example compresses a selected PDS:

//JOB1 JOB accounting information,REGION=nnnnK
//STEP1 EXEC PGM=ADRDSSU
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
 COMPRESS –
 DYNAM(338000) /* DYNAM ALLOC VOL 338000 */ -
 EXCLUDE(SYS1.**) /* EXCL ’SYS1....’ DATA SETS */ -
 /* IF THEY MEET THIS CRITERION */ -
 BY((DSCHA EQ 0)) /* DATA SET WAS BACKED UP */
/*

Compress PDSs on volume 338000 if:

• They are not system data sets (EXCLUDE(SYS1.**)), and
• They have not been updated (DSCHA EQ 0) since the last time
they were backed up (dumped).

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data facility data set services - DFDSS.

CONVERTV command.

The CONVERTV command is used to convert existing volumes to
and from SMS management without data movement. The
CONVERTV command performs three functions:

• Locks volumes that are ready for conversion to prevent new data
set allocations (PREPARE keyword).

• Examines volumes identified by SMS to determine if they can be
converted to SMS management (TEST keyword). No conversion is
actually performed, but DFSMSdss identifies any data sets that
cannot be converted to SMS management.

• Performs conversion of volumes into or out of SMS management.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data facility data set services - DFDSS.

CONVERTV command – an example.

Using the CONVERTV Command to Simulate Conversion

//JOB1 JOB accounting information,REGION=nnnnK
//STEP1 EXEC PGM=ADRDSSU
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
 CONVERTV SMS –
 DYNAM((VOL001,3380),(VOL002,3380),(VOL003)) –
 TEST

The preceding example uses the TEST keyword to simulate
conversion. The TEST keyword produces a report that indicates
whether the three volumes (VOL001, VOL002, and VOL003) can be
converted to SMS management.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data facility data set services - DFDSS.

COPY command.

The DFSMSdss COPY command performs data set movement,
volume movement, and track movement from one DASD volume to
another. You can copy data sets to another volume of either like or
unlike device types. Like devices have the same track capacity
(3390 Model 2 and 3390 Model 3), while unlike devices have
different track capacities (3380 Model K and 3390 Model 3).

DFSMSdss offers two ways to process COPY commands as follows:

• Logical processing is data set-oriented, which means that it
operates against data sets and volumes independently of physical
device format.

• Physical processing operates against volumes and tracks, but
moves data at the track-image level.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data facility data set services - DFDSS.

COPY command – an example.

A Tracks Copy with Track Relocation

The following example shows a tracks copy operation in which the
contents of cylinder 1, tracks 0 through 14, on source volume
338000 are copied to cylinder 3, tracks 0 through 14, on target
volume 338001. The operation stops if a permanent error occurs
on the source volume (CANCELERROR). The data written to the
target volume is to be verified (WRITECHECK).

//JOB2 JOB accounting information,REGION=nnnnK
//STEP1 EXEC PGM=ADRDSSU
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
 COPY TRACKS(1,0,1,14) /* SOURCE TRACKS */ -
 OUTTRACKS(3,0) /* TARGET TRACKS */ -
 INDYNAM(338000) /* ALLOC VOL 338000 DYNAMICALLY */ -
 OUTDYNAM(338001) /* ALLOC VOL 338001 DYNAMICALLY */ -
 CANCELERROR /* STOP ON INPUT ERROR */ -
 WRITECHECK /* VERIFY DATA WRITTEN TO OUT VOL */
/*

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data facility data set services - DFDSS.

DEFRAG command.

When you issue the DEFRAG command, DFSMSdss relocates data
set extents on a DASD volume to reduce or eliminate free space
fragmentation. A summary report is printed that lists the before
and after statistics of the volume.

Attention: Canceling the DEFRAG command is strongly
discouraged. Canceling an in-process DEFRAG can damage data in
numerous and unpredictable ways.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data facility data set services - DFDSS.

DEFRAG command – an example.

A DEFRAG Operation with Excluded Data Sets

//JOB1 JOB accounting information,REGION=nnnnK
//STEP1 EXEC PGM=ADRDSSU
//SYSPRINT DD SYSOUT=A
//DASD DD UNIT=3380,VOL=(PRIVATE,SER=111111),DISP=OLD
//A1 DD DSN=USER2.EXCLUDE,DISP=SHR
//SYSIN DD *
 DEFRAG DDNAME(DASD) –
 EXCLUDE(LIST(USER2.**.LIST,*.LOAD))
/*

In the example, DASD volume 111111 is defragmented. All data
sets whose first and last qualifiers are USER2 and LIST,
respectively, are to be excluded from this operation, as are data
sets with two qualifiers whose second qualifier is LOAD.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data facility data set services - DFDSS.

DUMP command.

With the DUMP command, you can dump DASD data to a sequential
data set. The storage medium for the sequential data set can be a
tape or DASD. You can dump data sets, an entire volume, or
ranges of tracks.

DFSMSdss offers two ways to process DUMP commands:

• Logical processing is data set-oriented, which means it operates
against data sets independently of physical device format.

• Physical processing can operate against data sets, volumes, and
tracks, but is oriented toward moving data at the track-image
level.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data facility data set services - DFDSS.

DUMP command – an example.

Dumping a User Catalog and its Aliases

To dump a user catalog, you perform a logical data set dump with
the fully qualified user catalog name as the data set name. If the
user catalog has any aliases, the aliases are automatically
dumped.

//JOB2 JOB accounting information,REGION=nnnnK
//STEP1 EXEC PGM=ADRDSSU
//SYSPRINT DD SYSOUT=A
//DASD1 DD UNIT=3380,VOL=(PRIVATE,SER=111111),DISP=OLD
//TAPE DD UNIT=3480,VOL=SER=TAPE02,
// LABEL=(1,SL),DISP=(NEW,CATLG),DSNAME=USER2.BACKUP
//SYSIN DD *
 DUMP OUTDDNAME(TAPE) –
 DATASET(INCLUDE(MY.USER.CAT))
/*

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data facility data set services - DFDSS.

PRINT command.

With the PRINT command, you can print:

• A single-volume non-VSAM data set, as specified by a fully
qualified name.

• A single-volume VSAM data set component (not cluster). The
component name specified must be the name in the VTOC, not the
name in the catalog.

• Ranges of tracks.

• All or part of the VTOC. The VTOC location need not be known.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data facility data set services - DFDSS.

PRINT command – an example.

Printing a Component of a VSAM Cluster

//JOB3 JOB accounting information,REGION=nnnnK
//STEP1 EXEC PGM=ADRDSSU
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
 PRINT INDYNAM(338000) /* ALLOC VOL 338000 DYNAMICALLY */ -
 DATASET(PARTS.VSAM1.INDEX) /* DATA SET THAT HAS BAD TRACK */ -
 WAIT(0,0) /* DO NOT WAIT IF ENQ FAILS */ -
 TOL(ENQF) /* IGNORE ENQ FAILURES */ -
 PSWD(PARTS.VSAM1/USERPSWD) /* PASSWORD FOR CLUSTER */
/*

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data facility data set services - DFDSS.

RELEASE command.

The RELEASE command releases allocated but unused space from
all eligible sequential, partitioned, and extended-format VSAM
data sets. DFSMSdss offers two ways to process RELEASE
commands:

• Logical processing operates on a single selected data set at a
time.

• Physical processing operates on all selected data sets that reside
on a single volume.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data facility data set services - DFDSS.

RELEASE command – an example.

Example of a Release Operation

The following is an example of a release operation on selected
sequential and PDSs:

//JOB1 JOB accounting information,REGION=nnnnK
//STEP1 EXEC PGM=ADRDSSU
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
 RELEASE INCLUDE(**) –
 DYNAM(338000) /* DYNAM ALLOC VOL 338000 */ -
 MINTRKS(10) /* THERE ARE 10 OR MORE UNUSED TRKS */ -
 /* MINSEC NOT SPEC. IT DEFAULTS TO 1 */
/*

Unused tracks of sequential and PDSs on volume 338000 are to be released
if both:
• The number of unused tracks in the data set is greater than or equal to
10.
• The data set can be extended later if required (MINSEC(1)). This need not
be specified, because it is the default.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data facility data set services - DFDSS.

RESTORE command.

With the RESTORE command, you can restore data to DASD
volumes from DFSMSdss-produced dump volumes. You can restore
data sets, an entire volume, or ranges of tracks. You can restore to
unlike devices from a logical dump tape.

DFSMSdss offers two ways to process RESTORE commands:

• Logical processing is data set-oriented, which means it operates
against data sets independently of physical device format.

• Physical processing can operate against data sets, volumes, and
tracks, but is oriented toward moving data at the track-image
level.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data facility data set services - DFDSS.

RESTORE command – an example.

Tracks Restore Operation

Example shows that DASD volume numbered 111111 will be
restored from the first data set of standard label tape volumes
called TAPE01 and TAPE02. The command input for a tracks
restore operation are shown below.

//JOB1 JOB accounting information,REGION=nnnnK
//STEP1 EXEC PGM=ADRDSSU
//SYSPRINT DD SYSOUT=A
//TAPE DD UNIT=3480,VOL=SER=(TAPE01,TAPE02),
// LABEL=(1,SL),DISP=(OLD,KEEP),DSNAME=USER2.BACKUP
//DASD DD UNIT=3380,VOL=(PRIVATE,SER=111111),DISP=OLD
//SYSIN DD *
 RESTORE TRACKS(1,0,1,5) INDDNAME(TAPE) –
 OUTDDNAME(DASD) PURGE
/*

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data Facility Sort (DFSORT).

Data Facility Sort (DFSORT).

An IBM licensed program that is a high-speed data-processing
utility. DFSORT provides a method for sorting, merging, and
copying operations, as well as providing versatile data
manipulation at the record, field, and bit level.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data Facility Sort (DFSORT).

DFSORT sample JCL.

//JS10 EXEC PGM=SORT,
// PARM=sort parms...
The EXEC statement invokes DFSORT via SORT or ICEMAN entry point names and
passes an optional PARM field value (ABEND, AVRGLEN, DYNALLOC, FILSZ, LIST,
MSGPRT, SIZE, SKIPREC, VERIFY, and others).

//STEPLIB DD DSN=...,DISP=SHR
This DD is only needed if DFSORT is not on the linklist, or if you are using a MODS
statement that names STEPLIB as the library from which the sort exits are to be
fetched.

//SORTLIB DD DSN=...,DISP=SHR
This DD is needed if you are using tape drives as sort work units, or if a merge
operation couldn't use the BLOCKSET merge method.

//DFSPARM DD *
 sort parms and sort control statements described below...
This DD is optional if you want to provide both the EXEC PARM options and the
control statements together from one source. This is a help when you are calling
DFSORT from another program.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data Facility Sort (DFSORT).

DFSORT sample JCL - continuation.

//SYMNAMES DD DSN=...,DISP=SHR
Defines the SYMNAMES data set containing statements to be used for symbol
processing. Required only if symbol processing is to be performed.

//SYMNOUT DD DSN=...,DISP=SHR
Defines the data set in which SYMNAMES statements and the symbol table are to be
listed. Optional if SYMNAMES DD is specified. Otherwise ignored.

//SYSOUT DD SYSOUT=*
This DD statement is required because DFSORT messages are written to this file.

//SORTIN DD DSN=input..DSN.to.sort,
// DISP=SHR
This required DD statement points to the input for a sort operation. The input file
can be a sequential file or PDS member, or a VSAM data set. Concatenated non-
VSAM files are supported if they all have the same RECFM with the largest block
size first in the concatenation.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data Facility Sort (DFSORT).

DFSORT sample JCL - continuation.

//SORTINnn DD DSN=input..DSN.to.sort,
// DISP=SHR
Identifies one of the pre-sorted input files for a merge operation. 'nn' is a number
in the range 01 through 99. SORTINnn files can't be concatenated. All SORTINnn
files have to have the same LRECL if fixed-length records are used.

//SORTOUT DD DSN=sorted.output.dsn,
// DISP=SHR
Identifies the output file for both sort and merge operations. This can be a
sequential file, a PDS member, or a VSAM file.

//SORTWKnn DD UNIT=SYSDA,DISP=SHR,
// SPACE=(TRK,(30,30),RLSE)
Defines sort work files, where 'nn' is a suffix in the range 01 through 32.
SORTWKnn files aren't needed if sorting a small data set whose records will all fit in
storage at once, or if you told DFSORT to obtain its sort work files dynamically via
the DYNALLOC parameter on an OPTION or SORT control statement.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data Facility Sort (DFSORT).

DFSORT sample JCL - continuation.

//outfil DD UNIT=SYSDA,DISP=SHR,
// SPACE=(TRK,(30,30),RLSE)
The OUTFIL DD statements describe the characteristics of the data sets in which the
processed (sorted, merged, copied) records are to be placed and indicate their
location.
Although the ddname SORTOUT can actually be used for an OUTFIL data set, the
term "SORTOUT" will be used to denote the single non-OUTFIL output data set.
Simply, you can specify different DDname if you do not want to use SORTOUT.

//SYSIN DD *
 sort control statements described below...
The control statements for DFSORT are input from this file. If DFSORT is
dynamically invoked from a PL/1 or COBOL program, the SORTCNTL DD is used to
override the control statements passed by the invoking program.

//SORTCNTL DD DSN=...,DISP=SHR
 sort control statements described below...
Defines the data set from which additional or changed DFSORT control statements
can be read when DFSORT is program-invoked. It is the same as SYSIN DD but
control statement are saved in data set.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data Facility Sort (DFSORT).

DFSORT sample JCL - continuation.

//SORTCKPT DD DSN=CHECKPT,UNIT=TAPE,
// DISP=(,KEEP),VOL=SER=ABC123
This DD statement allocates a sequential file to be used as the checkpoint data set
when sort checkpointing is requested via the CKPT parameter on an OPTION or
SORT control statement.

//SORTSNAP DD SYSOUT=*
SNAP dump output.

//SYSUDUMP DD SYSOUT=*
User dump output.

//SYSMDUMP DD SYSOUT=*
Machine dump output.

//SYSABEND DD SYSOUT=*
Abend dump output.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data Facility Sort (DFSORT).

DFSORT sample JCL - continuation.

//SORTDIAG DD DUMMY
The presence of this DD statement makes DFSORT write all messages (including
special diagnostics) to the SYSOUT file. The SORTDIAG DD should be used with
CAUTION since its usage substantially degrades DFSORT performance.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data Facility Sort (DFSORT).

DFSORT control statements – SORT.

The SORT control statement is used to initiate a sort and describe
which field(s) in each record are to be used as sort fields. The
format of the SORT control statement is:

SORT FIELDS=(pos,length,format,sequence,...) |
 FIELDS=(pos,length,sequence,...),FORMAT=format |
 FIELDS={(} COPY {)} |
 {,CKPT}
 {,DYNALLOC{=(d | ,n | d,n | OFF)}}
 {,EQUALS | ,NOEQUALS}
 {,FILSZ={n | En | Un} }
 {,SIZE={n | En | Un} }
 {,SKIPREC=n}
 {,STOPAFT=n}
 {,Y2PAST={s | f}

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data Facility Sort (DFSORT).

DFSORT control statements – RECORD.

The RECORD statement tells DFSORT the record format and
lengths of the records in the input file. You only need a RECORD
statement if the INPUT is from a VSAM file. The format of the
RECORD control statement is:

RECORD TYPE={F | D},LENGTH=(len1{,len2,len3}) |
 TYPE=V,LENGTH=(len1{,len2,len3,len4,len5,len6,len7})

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data Facility Sort (DFSORT).

DFSORT control statements – MERGE.

The MERGE control statement requests a merge operation. The
MERGE control statement is similar to the SORT control statement,
but a few SORT parameters are not needed. The format of the
MERGE statement is:

MERGE FIELDS=(pos,length,format,sequence,...) |
 FIELDS=(pos,length,sequence,...),FORMAT=format |
 FIELDS={(} COPY {)}
 {,EQUALS | ,NOEQUALS}
 {,FILES=n}
 {,FILSZ=n | ,SIZE=n}
 {,SKIPREC=n}
 {,STOPAFT=n}
 {,Y2PAST={s | f}

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data Facility Sort (DFSORT).

DFSORT control statements – END.

The END statement tells DFSORT to stop reading the input control
statement data set; it marks a logical 'end-of-file' on the
control statement input. You can insert an END statement to make
DFSORT ignore control statements after the END statement.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data Facility Sort (DFSORT).

DFSORT control statements – OPTIONS.

The OPTION control statement is used to set or override various
DFSORT execution options. Some of the options that you can set
on the OPTION control statement can also be set via the JCL
PARM= field or on a SORT or MERGE control statement. The format
of the OPTION statement is:

OPTION {ARESALL={ n | nK | nM} }
 {,ARESINV={n | nK | nM}
 {,AVGRLEN=n}
 ...
 ...
 many others
 ...
 ...

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data Facility Sort (DFSORT).

DFSORT control statements – INCLUDE.

The INCLUDE control statement is used to establish selection
criteria for the records to be included in the output data set.
You can include a record by comparing the contents of its fields
to a constant or to another field in the record. The format of the
INCLUDE statement is:

INCLUDE COND=({expression,{{AND | OR}|{ALL | NONE}},expression},...)
{,FORMAT=x}

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data Facility Sort (DFSORT).

DFSORT control statements – OMIT.

The OMIT control statement is used to establish selection
criteria for the records to be omitted from the output data set.
You can omit a record by comparing the contents of its fields
to a constant or to another field in the record. The format of the
OMIT statement is:

OMIT COND=({expression,{{AND | OR}|{ALL | NONE}},expression},...)
{,FORMAT=x}

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data Facility Sort (DFSORT).

DFSORT control statements – ALTSEQ.

The ALTSEQ statement tells DFSORT to change the collating
sequence for some specified character(s). The ALTSEQ process
causes degraded performance. The format of the ALTSEQ
statement:

ALTSEQ CODE=(ccpp{,ccpp...})

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The shortest program in the World.

One more special utility – IEFBR14.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Sample utility application.

Unit summary.

Now that you have completed this unit, you should be able to:

• Determine the job stream.

• Print sequential data sets.

• Edit sequential data sets.

• Convert input into a PDS.

• Maintain source libraries.

• List PDS directories.

• Copy PDS or PDSE members.

• Sort data.

1

JCL

 Chapter c4
Sample utility application

2 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Job Control Language

Chapter a1. Introduction to JCL

Chapter a2. Coding JOB statements

Chapter a3. Coding EXEC statements

Chapter a4. Coding DD statements

Chapter a5. Analyzing job output

Chapter a6. Conditional processing

3 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Job Control Language

Chapter b1. Using special DD statements

Chapter b2. Introducing procedures

Chapter b3. Modifying EXEC parameters

Chapter b4. Modifying DD parameters

Chapter b5. Determining the effective JCL

Chapter b6. Symbolic parameters

4 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Job Control Language

Chapter c1. Nested procedures

Chapter c2. Cataloging procedures

Chapter c3. Using utility programs

Chapter c4. Sample utility application

5

5 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Sample utility application.

Chapter c4

Sample utility application

6

6 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Sample utility application.

Unit introduction.

This unit analyzes examples of typical processing tasks that can be
accomplished with utilities.

Although available utilities, required JCL, and control statements
will vary with different installations, this unit provides a sampling
of the tasks that utilities can perform.

The material also introduces a process that can be applied in
choosing and executing any utility for processing needs.

7

7 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Sample utility application.

Course objectives.

Be able to:

• Determine the job stream.

• Print sequential data sets.

• Maintain source libraries.

• List PDS directories.

8

8 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Determining the job stream.

Determining the job stream.

Utility programs can be used in a variety of situations to provide
the processing required.

How to determine job streams?

An effective method for determining the job stream that will
accomplish the necessary processing is as follows:

1. Use the Utilities Manual table to find the utility that may be
appropriate to accomplish the task.

2. Once an appropriate utility or utilities is selected, read the
chapters of the Utilities Manual that describe the utility in
detail.

3. Look for an example that approximates the processing
requirements in the Utilities Manual. Modify the example (as
needed) to accomplish the task.

9

9 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Determining the job stream.

Determining the job stream.

In some cases, more than one utility will provide the processing required. Select
any one of the utilities that will do the job. The table below provides a list of
utilities that may be used to process a job/task.

JOB UTILITIES

Change data set organization IEBGENER, IEBUPDTE, IEBPTPCH

Convert to sequential data set IEBGENER, IEBUPDTE

Copy a partitioned data set IEBCOPY

Copy a sequential data set IEBGENER, IEBUPDTE, IEBPTPCH

Create a sequential output data set IEBDG, IEBGENER, IEBPTPCH

Edit and copy a sequential data set IEBGENER, IEBUPDTE, IEBPTPCH

Merge partitioned data sets IEBCOPY

Replace selected members of a PDSE IEBCOPY, IEBUPDTE

Usually you will select the one you are most familiar with and that requires the
least amount of utility control statement coding.

See the „z/OS DFSMSdfp Utilities“ book. Detailed information on how to use
each utility is found in individual chapters, which are sequenced alphabetically
by utility name. See Chapter 1, „Guide to Utility program functions“.

10

10 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Determining the job stream.

Are we on track?

Put the following steps in order to reflect the suggested method of
selecting and executing a utility program:

A. Find an appropriate example application.

B. Look up a utility that will perform the task.

C. Read the chapter that describes the utility.

D. Modify the code in the example as needed.

The correct order is B., C., A., D.

11

11 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Print sequential data sets.

Selecting a utility.

How to select a utility?

Assume you need to list the contents

of a data set in order to determine

what it contains. The data set

resides on a tape volume, as shown

on the right. In this case, consider

the following:

1. The need to print the contents

of a data set.

2. The data set resides on a tape

volume, which implies a sequential

data set.

SEQUENTIAL DATA SET

12

12 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Print sequential data sets.

Kinds of utilities.

The utilities available to print data
sets are as follows:

• IEBGENER – useful when you want
to copy, edit, or print the contents of
a sequential data set.

• IEBUPDTE – can be used to create
and modify PDS members.

• IEBPTPCH – can also be used to
print the contents of a data set.

IEBGENERIEBGENER IEBPTPCHIEBPTPCH

The IEBUPDTE utility is not appropriate for this application because it does
not involve printing. Both IEBGENER and IEBPTPCH can print sequential
data sets.

The examples in the Utilities Manual indicate that IEBPTPCH requires control
statements, whereas IEBGENER does not.

13

13 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Print sequential data sets.

IEBPTPCH output.

IEBPTCH has a unique output format. The data set in the example would print as

shown above.

LABEL OPERATOR OPERANDS
START 0
SAVE (1
BALR 12
USING *,
LA 1,
ST 13
ST 1,
LR 13
EXTRACTT
MVC O
WTO MF
L 13
RETURN(1
LTORG
DS 9D
DS F
WTO '
EQU O
END

BEGIN

SAVE
TIOTAD
OUTLINE
OUTMSG

4,12),,
,0
12
SAVE
,4(1)
8(13)
,1
IOTAD,
UTMSG,0(
=(E,OUTL
,4(13)
4,12

THIS IS
UTLINE+1

TESTPROG

FIELDS=T
1)
INE)

JOB XXXX
6,8

RAM

IOT

XXXX',
MG =L

Although this solution seems like it will do the job, IEBPTPCH has a unique
output format. Groups of eight characters are transferred from the input record
to the output record, separated by two blanks. This format repeats until all
input characters of a record are transferred to the output record.

14

14 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Print sequential data sets.

Are we on track?

The ______________ utility is useful when you want to copy, edit,
or print the contents of a sequential data set.

The correct answer is IEBGENER.

15

15 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Print sequential data sets.

JCL statements for IEBGENER.

The JCL statements required for IEBGENER, as shown above, are:

JOB – It identifies the job to the operating system.

EXEC – It specifies that the IEBGENER should be executed.

SYSPRINT – It indicates that the messages generated by IEBGENER are to be
directed to a printer.

SYSIN – It is necessary for IEBGENER. However, this example does not require
control statements, so the SYSIN statement specifies DUMMY.

SYSUT1 – It identifies the input data set.

SYSUT2 – It specifies the output data set of the PRINT operation.

//PRINT JOB
//STEP1 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=A
//SYSIN DD DUMMY
//SYSUT1 DD DDNAME=MYDATA,DISP=OLD,UNIT=TAPE,VOL=SER=112233
//SYSUT2 DD SYSOUT=A

DCB information may also be specified on the SYSUT2 statement. This DCB
information specifies the output record and block sizes. In this case, you omit
DCB information from the SYSUT2 statement. By default the utility uses the
same record and block size on output as it receives from input.

16

16 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Print sequential data sets.

Are we on track?

Complete the following SYSIN statement to indicate that no utility
control statements are required to process a job using a utility:

//SYSIN DD ______________

The correct answer is DUMMY.

17

17 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Print sequential data sets.

Are we on track?

For this programming exercise, assume you want to copy an in-
stream input, sequential data set to a tape volume. Using
IEBGENER complete the JCL statements on the screen as follows:

In line 1, execute IEBGENER.
In line 2, create an output tape data set named TSTTAPE.
In line 4, specify that the output records are 80 characters,
 blocked 40 records per block. The record format is FB.
In line 5, create utility messages in SYSOUT class A.

 //jobname JOB
1. //STEPNAME EXEC ___________
2. //SYSUT2 DD DSN=________
3. // VOL=SER=123456,UNIT=TAPE,
4. // DCB=(RECFM=FB,_________
5. //SYSPRINT DD ___________
6. //SYSIN DD DUMMY
7. //SYSUT1 DD *
 in-stream data
 /*

The correct answer is:

1. PGM=IEBGENER

2. TSTTAPE

4. LRECL=80,BLKSIZE=3200)

5. SYSOUT=A

18

18 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Maintaining source libraries.

IEBUPDTE program.

The IEBUPDTE (Update Data Set)
program can be used to create or
modify sequential data sets or PDSs
or PDSEs.

Why use IEBUPDTE?

IEBUPDTE is used primarily for
updating procedure, source and
macro libraries.

For the next example, assume a
procedure requires to be stored in a
procedure library and assign a
sequence number to each created
record.

PROC LIBRARY

PROCA

These sequence numbers will be used later if changes need to be made to
individual records within the procedure.

19

19 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Maintaining source libraries.

IEBUPDTE program – an example.

Assume the processing requirements are
as follows:

• The procedure will be entered in the job
stream.

• The output data set is a procedure
library named SYS1.PROCLIB.

• The new member will be named
MYPROC1.

• A unique sequence number should be
given to each record of the output
member. The starting sequence number
is to be 10 and the numbers should be
incremented by 10.

• Each record should be listed as it is
added to the PDS.

SYS1.PROCLIB

MYPROC1

20

20 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Maintaining source libraries.

General form for IEBUPDTE.

The example on the right shows the
general form for IEBUPDTE.

When adding a new member to an
existing PDS, specify PARM=NEW on
the EXEC statement invoking
IEBUPDTE.

PARM=MOD would indicate that the
output data set existed and has to be
modified. MOD is the default if PARM
is omitted.

JCL for IEBUPDTE:

//stepname EXEC PGM=IEBUPDTE,
// PARM=NEW
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD …
//SYSUT2 DD …
//SYSIN DD *

(Control Statements)

/*

21

21 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Maintaining source libraries.

Updating a source library.

The JCL on the screen is used to
update an existing library.

The SYSUT1 DD statement defines
the PDS to be updated, and the
SYSUT2 DD statement defines the
PDS after it is updated.

The data set defined by these two
DD statements is the same. Only its
content is changed by the utility.

JCL for IEBUPDTE:

//STEPNAME EXEC PGM=IEBUPDTE,
// PARM=NEW
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSN=SYS1.PROCLIB,
// DISP=OLD
//SYSUT2 DD DSN=SYS1.PROCLIB,
// DISP=OLD
//SYSIN DD *
(Control Statements)
/*

See following slides to see the control statements...

22

22 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Maintaining source libraries.

Are we on track?

Code an EXEC statement below to:

Execute IEBUPDTE

Specify that an existing data set is to be altered:

//JOBSTEP EXEC ______________

The correct answer is PGM=IEBUPDTE,PARM=MOD

23

23 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Maintaining source libraries.

Maintaining source libraries.

IEBUPDTE uses special utility control
statements with the ./ characters in
positions 1 and 2. These two characters
distinguish the control statements from
the input program that is also in the job
stream.

The following control statements are
required:

./ ADD indicates that a new member is
to be added to the PDS.

LIST=ALL is an option to list the entire
member on SYSPRINT.

NAME=names the newly created member
is a procedure MYPROC1.

Utility control statements for IEBUPDTE:

//SYSIN DD *
./ ADD LIST=ALL,NAME=MYPROC1
./ NUMBER NEW1=10,INCR=10

 -procedure being added-

./ ENDUP
/*

24

24 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Maintaining source libraries.

Maintainig source libraries.

./ NUMBER indicates that the new
procedure is to be assigned
sequence numbers.

NEW1= specifies the first sequence
number (in this case, 10).

INCR=10 indicates that the records
will be assigned sequence numbers
in increments of 10 (10, 20,etc).

./ ENDUP marks the end of the
member being added.

Utility control statements for IEBUPDTE:

//SYSIN DD *
./ ADD LIST=ALL,NAME=MYPROC1
./ NUMBER NEW1=10,INCR=10

.

.

.
./ ENDUP
/*

25

25 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Maintaining source libraries.

Maintaining source libraries.

The example on the right shows the
job stream needed for these
processing requirements.

Notice that the characters ./ in the
control statements begin in column
1.

//stepname EXEC PGM=IEBUPDTE,
// PARM=MOD
//SYSUT1 DD DSN=SYS1.PROCLIB,
// DISP=OLD
//SYSIN DD *
./ ADD LIST=ALL,NAME=MYPROC1
./ NUMBER NEW1=10,INCR=10
 -procedure being added-
./ ENDUP
/*
//SYSPRINT DD SYSOUT=A

26

26 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Maintaining source libraries.

Maintaining source libraries.

In the previous example, a new member
was added to an existing PDS.

If you changed the requirements to add a
new member to a new PDS, the job
stream would look like the screen on the
right.

The output data set is ASM.SOURCLIB
and the output member is named
MYPGM1. In this case:

• PARM=NEW is on the EXEC statement.
This specifies a new master data set.

• When creating a PDS, no //SYSUT1 DD
is needed.

• The new partitioned master is defined
on the SYSUT2 statement.

//stepname EXEC PGM=IEBUPDTE,
// PARM=NEW
//SYSUT2 DD DSN=ASM.SOURCELIB,
// DISP=(NEW,KEEP),
// UNIT=…,VOL=SER=…,
// SPACE=(…,(…,…,…))
//SYSIN DD *
./ ADD LIST=ALL,NAME=MYPGM1
./ NUMBER NEW1=10,INCR=10
 -source program-
./ ENDUP
/*

27

27 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Maintaining source libraries.

Maintaining source libraries.

IEBUPDTE can be used to add (./ ADD) modify (./ CHANGE), or
replace (./ REPL) members in a PDS, depending on the control
statements used.

./ ADD precedes and names a member or data set to be added.
The general form is as follows:

./ ADD NAME=member, LIST=ALL

./ CHANGE is used when deleting, numbering or adding data in a
member or data set. It is followed by DELETE, NUMBER or data
statements.

./ REPL precedes a member to replace an existing member in the
SYSUT2 data set.

28

28 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Maintaining source libraries.

Are we on track?

Match the IEBUPDTE utility control statement with its function:

 ./ ADD A. Precedes and names a member or a data
 set to be added to the SYSUT2 data set.

 ./ REPL B. Precedes a member to replace an existing
 member in the SYSUT2 PDS.

 ./ NUMBER C. Indicates modifications to a member of a
 PDS.

 ./ CHANGE D. Indicates that portions of a member are to
 be numbered.

The correct answer is 1-A, 2-B, 3-D, 4-C.

29

29 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Maintaining source libraries.

Are we on track?

Assume you have the following records in a member named
PAYROLL in a PDS named MYSOURCE:

123 J.SMITH DEPT.49 00000010
146 J.DOE DEPT.98 00000020
987 H.BROWN DEPT.012 00000030
993 J.HORNER DEPT.23 00000040

Complete the data statement so that the IEBUPDTE will alter
PAYROLL to include the following. Assume there are no spaces
between the fields.
987 H.BROWN DEPT.911 00000030

// EXEC PGM=IEBUPDTE,PARM=MOD . . .
//SYSIN DD *
./ CHANGE NAME=PAYROLL,LIST=ALL 987 _____________
./ ENDUP
/*

The correct answer is H.BROWNDEPT.91100000030

30

30 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Listing PDS directories.

Listing PDS directories.

The final utility application concerns
printing the contents of a PDS directory.

Why is IEHLIST utility important?

The listing helps determine which
member names are already in the PDS.

The IEHLIST (List System Data) utility
can:

• List the entries in a PDS directory.

• List the Volume Table of Contents
(VTOC) of direct-access volumes.

Partitioned Data Set

 1 0
0 1

JOB

 1 0
0 1

 1 0
0 1

Printing the contents of a PDS directory is often advisable before attempting
to add a new member to a PDS, since a unique name is required.

See MCOE.EDU.JCL.JCL(VTOCLST).

31

31 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Listing PDS directories.

Listing PDS directories.

When using IEHLIST, use the SYSIN
and SYSPRINT DD statements.

However, the user can create a
DDNAME for the DD statement that
defines the volume to be processed.

The purpose of this DD statement is
to provide enough information for
the system to find and allocate the
volume.

JCL for IEHLIST:

//stepname EXEC PGM=IEHLIST
//SYSPRINT DD SYSOUT=A
//DDname DD UNIT=device,
// VOL=SER=volume,
// DISP=OLD
//SYSIN DD *
-control statements-
/*

SYSIN is for IEHLIST control statements.

SYSPRINT is for the output.

32

32 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Listing PDS directories.

Listing PDS directories.

For IEHLIST, use a utility control statement to specify the data set’s name, rather
than coding it on the DD statement. The control statement also indicates the unit
type and volume serial number of the data set.

LISTPDS requests a listing of one or more partitioned data sets or PDSEs.

The general form and example are shown above. The user must know the data set’s
complete name and volume location. The utility cannot refer to JCL or catalog
information.

LISTPDS

LISTPDS

DSNAME=name,VOL=device=serial

DSNAME=ASM.SOURCELIB,VOL=SYSSA=112457

Label
 field

Operation
 field

Operand
 field

Data set name Unit Volume

The format of the utility control statement differs from that of a JCL statement
specifying volume and unit.

33

33 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Listing PDS directories.

Listing PDS directories – an example.

The complete job stream to list the
PDS directory is illustrated on the
right.

This example uses the ddname
ANYDD1. The ANYDD1 DD identifies
the directory listing function to be
performed, and the name of the data
set whose directory needs to be
listed.

Job Stream:

//stepname EXEC PGM=IEHLIST
//SYSPRINT DD SYSOUT=A
//ANYDD1 DD UNIT=SYSDA,
// VOL=SER=112457,
// DISP=OLD
//SYSIN DD *
 LISTPDS DSNAME=ASM.SOURCELIB,
 VOL=SYSDA=112457
/*

ANYDD1 DD defines a device on which a disk volume (112457) is mounted.

34

34 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Listing PDS directories.

Listing Volume Table Of Contents – an example.

One other control statement is often used with the IEHLIST utility. LISTVTOC
requests a listing of all or part of a volume table of contents.

The example above would list the volume table of contents of DASD volume
112457, using a unit designation of SYSDA. The FORMAT option lists the VTOC in
edited form.

LISTVTOC

LISTVTOC

VOL=device=serial,option,. . .

VOL=SYSDA=112457,FORMAT

Label
 field

Operation
 field

Operand
 field

35

35 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Listing PDS directories.

Are we on track?

With the IEHLIST utility, the data set name, volume serial number,
and unit type are given on the _________ control statement.

The correct answer is LISTPDS.

36

36 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Listing PDS directories.

Are we on track?

Assume that you want to print the VTOC on direct access volume
987654. You will use a unit designation of DASD.

Code the JCL DD statement required to identify the volume. Use
DISP=OLD.

//STEPNAME EXEC PGM=IEHLIST
//ANYDD DD VOL=SER=987654
// _______________
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

Code the utility control statement required with IEHLIST to
request a listing of a VTOC. Specify that the VTOC is to be listed in
edited form.

 LISTVTOC _________________
/*

The correct answer is:

1. SER=987654,UNIT=DASD,DISP=OLD

2. FORMAT,VOL=DASD=987654

37

37 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Listing PDS directories.

Glossary.

LISTPDS
An IEHLIST control statement that lists the directory of a
partitioned data set.

38

38 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

IEBCOPY Library copy program.

IEBCOPY Library copy program.

IEBCOPY is a data set utility that is used to copy or merge
members between one or more PDSs, or PDSEs, in full or in part.
You can also use IEBCOPY to create a backup of a PDS into a
sequential data set (called an unload data set or PDSU), and to
copy members from the backup into a PDS.

You can use IEBCOPY to perform the following tasks:

• Make a copy of a PDS or PDSE.
• Merge PDSs.
• Create a sequential form of a PDS or PDSE for a backup or transport.
• Reload one or more members from a PDSU into a PDS or PDSE.
• Replace members of a PDS or PDSE.
• Rename selected members of a PDS or PDSE when copied.
• Exclude members from a data set to be copied, unloaded, or loaded.
• Compress a PDS in place.
• Upgrade a load module for faster loading by MVS program fetch.
• Copy and reblock load modules.
• Convert a PDS to a PDSE or a PDSE to a PDS.
• and many others...

In addition, IEBCOPY automatically lists the number of unused directory
blocks and the number of unused tracks that are available for member records
if the output data set is a partitioned data set.

39

39 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

IEBCOPY Library copy program.

Converting PDSs to PDSEs.

You can use IEBCOPY to convert partitioned data sets to PDSEs.

To convert a PDS to a PDSE, create a PDSE and copy the PDS into
the new PDSE. This can be accomplished with one use of IEBCOPY.

40

40 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

IEBCOPY Library copy program.

Copying data sets.

IEBCOPY can be used to totally or partially copy a PDS from one
DASD to another. In addition, a data set can be copied to its own
volume, provided its data set name is changed. (If the data set
name is not changed, IEBCOPY interprets the request as a
compress-in-place.)

Members copied into a PDS are not physically reordered; members
are copied in the physical order in which they occur in the original
data set.

See KOTMI01.WORK.JCL(COMPRESS).

41

41 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

IEBCOPY Library copy program.

Merging data sets.

Merging data sets is done by copying or loading the additional
members to an existing PDS. The merge operation (ordering of the
directory of the output data set) is automatically performed by
IEBCOPY.

Increasing Directory Space for a PDS
IEBCOPY cannot increase the number of directory blocks in a PDS.
(A PDSE directory automatically expands as needed.) If you are
not sure there will be enough directory blocks in the output PDS
you are merging to, then you should expand the output data set
directory space before beginning the merge operation.

42

42 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

IEBCOPY Library copy program.

Unloading (backing up) data sets.

IEBCOPY can be used to create a backup copy of a PDS by copying
(unloading) it to a sequential data set on DASD, tape, or other
device supported by QSAM.

IEBCOPY creates an unload data set when you specify physical
sequential organization (DSORG=PS) for the output data set. To
create a PDS, specify DSORG=PO and DSNTYPE=PDS or
DSNTYPE=LIBRARY.

To unload more than one PDS to the same tape volume in one
execution of IEBCOPY, multiple copy operations must be used and
multiple sequential data sets must be allocated to successive files
on the tape.

The PDSE directory can contain attributes in addition to those
traditionally kept in a PDS directory entry.
Some PDSE extended attributes are recorded on an unload data
set and will be reloaded when the target is a PDSE.

43

43 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

IEBCOPY Library copy program.

Job control statements.

Statement Use

JOB Starts the job.
EXEC Starts IEBCOPY.
SYSPRINT DD Defines a sequential data set used for listing control

statements and messages.
SYSUT1 or
anyname1 DD Defines a PDS or unload data set for input.
SYSUT2 or
anyname2 DD Defines a PDS or unload data set for output.
SYSUT3 DD Defines a spill data set on a DASD or VIO device. SYSUT3

is used when there is no space in virtual storage for some
input data set directory entries.

SYSUT4 DD Defines a spill data set on a DASD or VIO device. SYSUT4
is used when there is no space in virtual storage for the
output data set directory.

SYSIN DD Defines the optional control data set.

44

44 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

IEBCOPY Library copy program.

Utility control statements.

Statement Use

ALTERMOD Indicates the beginning of an alter-in-place operation for
load modules.

COPY Indicates the beginning of a COPY operation.
COPYGRP Indicates the beginning of a COPYGRP operation.
COPYMOD Indicates the beginning of a copy and load module reblock

operation.
INDD= Indicates the beginning of another copy step.
EXCLUDE Specifies members in the input data set to be excluded

from the copy step.
SELECT Specifies which members in the input data set are to be

copied.

See MCOE.EDU.JCL.JCL(LIBMT and MTLIB).

45

45 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

IEBCOPY Library copy program.

Example 1 – Copy an entire data set.

In this example, a PDS (DATASET5) is copied from one disk
volume to another.

//COPY JOB ...
//JOBSTEP EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=DATASET5,UNIT=disk,VOL=SER=111113,DISP=SHR
//SYSUT2 DD DSNAME=DATASET4,UNIT=disk,VOL=SER=111112,
// DISP=(NEW,KEEP),SPACE=(TRK,(5,1,2))

The control statements are discussed below:

• SYSUT1 DD defines a PDS, DATASET5, that contains two
members (A and C).

• SYSUT2 DD defines a new PDS, DATASET4, that is to be kept
after the copy operation. Five tracks are allocated for the data set; two blocks are
allocated for directory entries.

• Because the PDS has only two members, SYSUT3 and SYSUT4
DD are not needed.

Because the input and output data sets are identified as SYSUT1 and
SYSUT2, the SYSIN data set is not needed. The SYSUT1 data set will be
copied in full to the SYSUT2 data set. After the copy operation is finished,
DATASET4 will contain the same members that are in DATASET5. However,
there will be no embedded, unused space in DATASET4. If you are copying a
PDSE, the processing is the same, except that there is no embedded, unused
space in a PDSE.

46

46 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

IEBCOPY Library copy program.

Example 2 – Merge four data sets.

In this example, members are copied from three input PDSs
(DATASET1, DATASET5, and DATASET6) to an existing output PDS
(DATASET2). The sequence in which the control statements occur
controls the manner and sequence in which PDSs are processed.

//COPY JOB ...
//JOBSTEP EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=A
//IN1 DD DSN=DATASET1,UNIT=disk,VOL=SER=111112,DISP=SHR
//IN5 DD DSN=DATASET5,UNIT=disk,VOL=SER=111114,DISP=OLD
//IN6 DD DSN=DATASET6,UNIT=disk,VOL=SER=111117,DISP=(OLD,DELETE)
//OUT2 DD DSN=DATASET2,UNIT=disk,VOL=SER=111115,DISP=(OLD,KEEP)
//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(1))
//SYSIN DD *
 COPYOPER COPY INDD=IN1
 INDD=IN5
 INDD=IN6
 OUTDD=OUT2
/*

COPYOPER is a label only.

47

47 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

IEBCOPY Library copy program.

Example 2 – Merge four data sets.

The control statements are discussed below:

• IN1 DD defines a PDS (DATASET1). This data set contains three members (A, B,
and F).
• IN5 DD defines a PDS (DATASET5). This data set contains two members (A and
C).
• OUT2 DD defines a PDS (DATASET2). This data set contains two members (C and
E).
• IN6 DD defines a PDS (DATASET6). This data set contains three members (B, C,
and D). This data set is to be deleted when processing is completed.
• SYSUT3 defines a temporary spill data set.
• SYSIN DD defines the control data set, which follows in the input stream. The data
set contains a COPY statement and three INDD statements.
• COPY indicates the start of the copy operation. The OUTDD parameter specifies
DATASET2 as the output data set.
• The first INDD statement specifies DATASET1 as the first input data set to be
processed. All members (A, B and F) are copied to DATASET2.
• The second INDD statement specifies DATASET6 as the second input data set to
be processed.

Processing occurs as follows:

1. Since replacement is not specified, members B and C, which already exist
in DATASET2, are not copied to DATASET2.

2. Member D is copied to DATASET2.

3. All members in DATASET6 are lost when the data set is deleted. The third
INDD statement specifies DATASET5 as the third input data set to be
processed. No members are copied to DATASET2 because all exist in
DATASET2.

48

48 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

IEBCOPY Library copy program.

Example 3 – Unload and compress a data set.

In this example, a PDS is unloaded to a tape volume to create a
backup copy of the data set. If this step is successful, the PDS is to
be compressed in place.

//SAVE JOB ...
//STEP1 EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSN=PARTPDS,UNIT=disk,VOL=SER=PCP001,DISP=OLD
//SYSUT2 DD DSN=SAVDATA,UNIT=tape,VOL=SER=TAPE03,DISP=(NEW,KEEP),
// LABEL=(,SL)
//SYSUT3 DD DSN=TEMP1,UNIT=disk,VOL=SER=111111,DISP=(NEW,DELETE),
// SPACE=(80,(60,45))
//SYSIN DD DUMMY
//STEP2 EXEC PGM=IEBCOPY,COND=(0,NE),PARM=’SIZE=500K’
//SYSPRINT DD SYSOUT=A
//COMPDS DD DSN=PARTPDS,UNIT=disk,DISP=OLD,VOL=SER=PCP001
//SYSUT3 DD DSN=TEMPA,UNIT=disk,VOL=SER=111111,DISP=(NEW,DELETE),
// SPACE=(80,(60,45))
//SYSIN DD *
 COPY OUTDD=COMPDS,INDD=COMPDS
/*

49

49 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

IEBCOPY Library copy program.

Example 3 – Unload and compress a data set.

The control statements are discussed below:

• SYSUT1 DD defines a PDS (PARTPDS) that resides on a disk volume and is
assumed to have 700 members.The number of members is used to calculate the
space allocation on SYSUT3.
• SYSUT2 DD defines a sequential data set to hold PARTPDS in unloaded form. This
data set must be NEW.
• SYSUT3 DD defines the temporary spill data set.
• SYSIN DD defines the control data set. Because SYSIN is dummied and
SYSUT2 defines a sequential data set, all members of the SYSUT1 data set will be
unloaded to the SYSUT2 data set.
• The second EXEC statement marks the beginning of the compress-in-place
operation.
• COMPDS DD defines a PDS (PARTPDS).
• SYSUT3 DD defines the temporary spill data set to be used if there is not
enough space in main storage for the input data set’s directory entries.
• SYSIN DD defines the control data set, which follows in the input stream.
• COPY marks the beginning of the copy operation. Because the same DD
statement is specified for both the INDD and OUTDD operands, the data set is
compressed in place.

50

50 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

IEBCOPY Library copy program.

Example 4 – Convert a PDS to a PDSE.

In this example, a PDS is converted to a PDSE.

//CONVERT JOB ...
//STEP1 EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSN=PDSSET,DISP=SHR,DSNTYPE=PDS
//SYSUT2 DD DSN=PDSESET,LIKE=PDSSET,DSNTYPE=LIBRARY,
// DISP=(NEW,CATLG),STORCLAS=SCLASX,DATACLAS=DCLASY

The control statements are discussed below:

• SYSUT1 DD defines the input PDS. The DSNTYPE keyword has no effect because it
is an existing data set.
• SYSUT2 DD defines the output PDSE. This new data set will be SMS-managed
because it has a storage class. The LIKE parameter indicates that the DCB and
SPACE attributes for PDSESET are to be copied from PDSSET. The DSNTYPE
parameter defines the new data set as a PDSE rather than as a PDS.
DATACLAS=DCLASY identifies the PPDSE as a program object PDSE with undefined
logical record length. The SMS chooses an appropriate volume for the allocation,
based on how SCLASX was defined.

Since the DDnames “SYSUT1” and “SYSUT2” are used to define the input
and output data sets, no SYSIN data set is required.

51

51 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data facility data set services – DFDSS.

DFDSS utility.

This program is the primary disk dump and restore program
provided with z/OS. It is capable of filtering and selecting which
data sets to dump or restore, but it is intended more to operate on
all data sets in a volume or all data sets having some SMS
management class rather than on individual data sets.

The purpose of dumping a disk is usually to provide a backup of
the contents that can be restored, if needed. A common use is to
dump complete volumes but restore only a specific data set that
was accidentally destroyed.

A backup is usually written to tape, but can be written to a disk
data set. A disk can be dumped track-by-track (known as a
physical dump) or data set-by-data set (known as a logical dump).
When a logical dump is performed, multiple data set extents may
be combined into a single extent, PDSs are compressed, and free
space is all in a single extent.

See „DFSMSdss.pdf“, „z/OS DFSMS Storage Administration Reference (for
DFSMSdfp, DFSMSdss, DFSMShsm)“ and „z/OSDFSMSdss Storage
Administration Guide“ for more information.

52

52 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data facility data set services - DFDSS.

DFDSS utility.

You can use DFDSS interactively from a terminal similar to the way
ISPF is used (using Interactive Storage Management Facility –
ISMF), or you can invoke it through JCL.

DFDSS provides several facilities not in the other utility programs,
such as releasing unused space in data sets, combining data set
extents , consolidating free space on volumes, and backing up and
restoring data sets.

DFDSS can convert data sets to be SMS-managed data sets. It is
intended more for site management than for individual application
programmer.

53

53 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data facility data set services - DFDSS.

BUILDSA command.

The BUILDSA function builds the IPL-able core image under the
current operating system.

Use the BUILDSA command to build the IPL-able core image for
the Stand-Alone Services program. You can specify the device
(card reader, tape drive, or DASD volume) from which Stand-Alone
Services will be IPLed.

54

54 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data facility data set services - DFDSS.

BUILDSA command – an example.

Core Image for IPL from Tape

In this example, Stand-Alone Services is created for IPLing in
stand-alone mode from a tape. The core image is then placed on
an unlabeled tape.

//BUILDSA JOB accounting information,REGION=nnnnK
//STEP1 EXEC PGM=ADRDSSU,PARM=’UTILMSG=YES’
//SAMODS DD DSN=SYS1.SADRYLIB,DISP=SHR
//TAPEDD DD DSN=ADRSA.IPLT,UNIT=3480,LABEL=(,NL),
// DISP=(NEW,KEEP),VOL=SER=TAPE01,
// DCB=(DSORG=PS,RECFM=U,BLKSIZE=32760,LRECL=32760)
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
 BUILDSA –
 INDD(SAMODS) –
 OUTDD(TAPEDD) –
 IPL(TAPE)
/*

Note: The DCB parameters must be coded as shown.

55

55 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data facility data set services - DFDSS.

COMPRESS command.

The COMPRESS command compresses PDSs on a specified volume.
Compressing (degassing) removes unused space between
members in a PDS. This command is useful for compressing
system PDSs before you apply maintenance (to avoid certain
space-related abends).

Restriction: You must not compress data sets that contain
DFSMSdss or IEBCOPY executable code.

56

56 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data facility data set services - DFDSS.

COMPRESS command – an example.

Example of Compress Operations

The following example compresses a selected PDS:

//JOB1 JOB accounting information,REGION=nnnnK
//STEP1 EXEC PGM=ADRDSSU
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
 COMPRESS –
 DYNAM(338000) /* DYNAM ALLOC VOL 338000 */ -
 EXCLUDE(SYS1.**) /* EXCL ’SYS1....’ DATA SETS */ -
 /* IF THEY MEET THIS CRITERION */ -
 BY((DSCHA EQ 0)) /* DATA SET WAS BACKED UP */
/*

Compress PDSs on volume 338000 if:

• They are not system data sets (EXCLUDE(SYS1.**)), and
• They have not been updated (DSCHA EQ 0) since the last time
they were backed up (dumped).

Note: It seems that the example specifies what I want to EXCLUDE, but it
does not specify what I want to INCLUDE – the INCLUDE keyword is missing.
In fact, in that case, the COMPRESS command compresses all PDSs located
on the 338000 volume – the information is in the VTOC.

See „Filtering by Data Set Characteristics“ in „DFSMSdss Storage
Administration Reference“ for DSCHA parameter description.

57

57 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data facility data set services - DFDSS.

CONVERTV command.

The CONVERTV command is used to convert existing volumes to
and from SMS management without data movement. The
CONVERTV command performs three functions:

• Locks volumes that are ready for conversion to prevent new data
set allocations (PREPARE keyword).

• Examines volumes identified by SMS to determine if they can be
converted to SMS management (TEST keyword). No conversion is
actually performed, but DFSMSdss identifies any data sets that
cannot be converted to SMS management.

• Performs conversion of volumes into or out of SMS management.

Guideline: Proper RACF security authorization might be required.

58

58 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data facility data set services - DFDSS.

CONVERTV command – an example.

Using the CONVERTV Command to Simulate Conversion

//JOB1 JOB accounting information,REGION=nnnnK
//STEP1 EXEC PGM=ADRDSSU
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
 CONVERTV SMS –
 DYNAM((VOL001,3380),(VOL002,3380),(VOL003)) –
 TEST

The preceding example uses the TEST keyword to simulate
conversion. The TEST keyword produces a report that indicates
whether the three volumes (VOL001, VOL002, and VOL003) can be
converted to SMS management.

59

59 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data facility data set services - DFDSS.

COPY command.

The DFSMSdss COPY command performs data set movement,
volume movement, and track movement from one DASD volume to
another. You can copy data sets to another volume of either like or
unlike device types. Like devices have the same track capacity
(3390 Model 2 and 3390 Model 3), while unlike devices have
different track capacities (3380 Model K and 3390 Model 3).

DFSMSdss offers two ways to process COPY commands as follows:

• Logical processing is data set-oriented, which means that it
operates against data sets and volumes independently of physical
device format.

• Physical processing operates against volumes and tracks, but
moves data at the track-image level.

60

60 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data facility data set services - DFDSS.

COPY command – an example.

A Tracks Copy with Track Relocation

The following example shows a tracks copy operation in which the
contents of cylinder 1, tracks 0 through 14, on source volume
338000 are copied to cylinder 3, tracks 0 through 14, on target
volume 338001. The operation stops if a permanent error occurs
on the source volume (CANCELERROR). The data written to the
target volume is to be verified (WRITECHECK).

//JOB2 JOB accounting information,REGION=nnnnK
//STEP1 EXEC PGM=ADRDSSU
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
 COPY TRACKS(1,0,1,14) /* SOURCE TRACKS */ -
 OUTTRACKS(3,0) /* TARGET TRACKS */ -
 INDYNAM(338000) /* ALLOC VOL 338000 DYNAMICALLY */ -
 OUTDYNAM(338001) /* ALLOC VOL 338001 DYNAMICALLY */ -
 CANCELERROR /* STOP ON INPUT ERROR */ -
 WRITECHECK /* VERIFY DATA WRITTEN TO OUT VOL */
/*

See MCOE.EDU.JCL.JCL(DSSCPYDS) for logical processing example.

61

61 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data facility data set services - DFDSS.

DEFRAG command.

When you issue the DEFRAG command, DFSMSdss relocates data
set extents on a DASD volume to reduce or eliminate free space
fragmentation. A summary report is printed that lists the before
and after statistics of the volume.

Attention: Canceling the DEFRAG command is strongly
discouraged. Canceling an in-process DEFRAG can damage data in
numerous and unpredictable ways.

62

62 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data facility data set services - DFDSS.

DEFRAG command – an example.

A DEFRAG Operation with Excluded Data Sets

//JOB1 JOB accounting information,REGION=nnnnK
//STEP1 EXEC PGM=ADRDSSU
//SYSPRINT DD SYSOUT=A
//DASD DD UNIT=3380,VOL=(PRIVATE,SER=111111),DISP=OLD
//A1 DD DSN=USER2.EXCLUDE,DISP=SHR
//SYSIN DD *
 DEFRAG DDNAME(DASD) –
 EXCLUDE(LIST(USER2.**.LIST,*.LOAD))
/*

In the example, DASD volume 111111 is defragmented. All data
sets whose first and last qualifiers are USER2 and LIST,
respectively, are to be excluded from this operation, as are data
sets with two qualifiers whose second qualifier is LOAD.

63

63 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data facility data set services - DFDSS.

DUMP command.

With the DUMP command, you can dump DASD data to a sequential
data set. The storage medium for the sequential data set can be a
tape or DASD. You can dump data sets, an entire volume, or
ranges of tracks.

DFSMSdss offers two ways to process DUMP commands:

• Logical processing is data set-oriented, which means it operates
against data sets independently of physical device format.

• Physical processing can operate against data sets, volumes, and
tracks, but is oriented toward moving data at the track-image
level.

See also RESTORE command.

64

64 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data facility data set services - DFDSS.

DUMP command – an example.

Dumping a User Catalog and its Aliases

To dump a user catalog, you perform a logical data set dump with
the fully qualified user catalog name as the data set name. If the
user catalog has any aliases, the aliases are automatically
dumped.

//JOB2 JOB accounting information,REGION=nnnnK
//STEP1 EXEC PGM=ADRDSSU
//SYSPRINT DD SYSOUT=A
//DASD1 DD UNIT=3380,VOL=(PRIVATE,SER=111111),DISP=OLD
//TAPE DD UNIT=3480,VOL=SER=TAPE02,
// LABEL=(1,SL),DISP=(NEW,CATLG),DSNAME=USER2.BACKUP
//SYSIN DD *
 DUMP OUTDDNAME(TAPE) –
 DATASET(INCLUDE(MY.USER.CAT))
/*

65

65 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data facility data set services - DFDSS.

PRINT command.

With the PRINT command, you can print:

• A single-volume non-VSAM data set, as specified by a fully
qualified name.

• A single-volume VSAM data set component (not cluster). The
component name specified must be the name in the VTOC, not the
name in the catalog.

• Ranges of tracks.

• All or part of the VTOC. The VTOC location need not be known.

66

66 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data facility data set services - DFDSS.

PRINT command – an example.

Printing a Component of a VSAM Cluster

//JOB3 JOB accounting information,REGION=nnnnK
//STEP1 EXEC PGM=ADRDSSU
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
 PRINT INDYNAM(338000) /* ALLOC VOL 338000 DYNAMICALLY */ -
 DATASET(PARTS.VSAM1.INDEX) /* DATA SET THAT HAS BAD TRACK */ -
 WAIT(0,0) /* DO NOT WAIT IF ENQ FAILS */ -
 TOL(ENQF) /* IGNORE ENQ FAILURES */ -
 PSWD(PARTS.VSAM1/USERPSWD) /* PASSWORD FOR CLUSTER */
/*

67

67 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data facility data set services - DFDSS.

RELEASE command.

The RELEASE command releases allocated but unused space from
all eligible sequential, partitioned, and extended-format VSAM
data sets. DFSMSdss offers two ways to process RELEASE
commands:

• Logical processing operates on a single selected data set at a
time.

• Physical processing operates on all selected data sets that reside
on a single volume.

68

68 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data facility data set services - DFDSS.

RELEASE command – an example.

Example of a Release Operation

The following is an example of a release operation on selected
sequential and PDSs:

//JOB1 JOB accounting information,REGION=nnnnK
//STEP1 EXEC PGM=ADRDSSU
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
 RELEASE INCLUDE(**) –
 DYNAM(338000) /* DYNAM ALLOC VOL 338000 */ -
 MINTRKS(10) /* THERE ARE 10 OR MORE UNUSED TRKS */ -
 /* MINSEC NOT SPEC. IT DEFAULTS TO 1 */
/*

Unused tracks of sequential and PDSs on volume 338000 are to be released
if both:
• The number of unused tracks in the data set is greater than or equal to
10.
• The data set can be extended later if required (MINSEC(1)). This need not
be specified, because it is the default.

69

69 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data facility data set services - DFDSS.

RESTORE command.

With the RESTORE command, you can restore data to DASD
volumes from DFSMSdss-produced dump volumes. You can restore
data sets, an entire volume, or ranges of tracks. You can restore to
unlike devices from a logical dump tape.

DFSMSdss offers two ways to process RESTORE commands:

• Logical processing is data set-oriented, which means it operates
against data sets independently of physical device format.

• Physical processing can operate against data sets, volumes, and
tracks, but is oriented toward moving data at the track-image
level.

70

70 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data facility data set services - DFDSS.

RESTORE command – an example.

Tracks Restore Operation

Example shows that DASD volume numbered 111111 will be
restored from the first data set of standard label tape volumes
called TAPE01 and TAPE02. The command input for a tracks
restore operation are shown below.

//JOB1 JOB accounting information,REGION=nnnnK
//STEP1 EXEC PGM=ADRDSSU
//SYSPRINT DD SYSOUT=A
//TAPE DD UNIT=3480,VOL=SER=(TAPE01,TAPE02),
// LABEL=(1,SL),DISP=(OLD,KEEP),DSNAME=USER2.BACKUP
//DASD DD UNIT=3380,VOL=(PRIVATE,SER=111111),DISP=OLD
//SYSIN DD *
 RESTORE TRACKS(1,0,1,5) INDDNAME(TAPE) –
 OUTDDNAME(DASD) PURGE
/*

71

71 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data Facility Sort (DFSORT).

Data Facility Sort (DFSORT).

An IBM licensed program that is a high-speed data-processing
utility. DFSORT provides a method for sorting, merging, and
copying operations, as well as providing versatile data
manipulation at the record, field, and bit level.

See „Utilities.pdf“ and „z/OS DFSORT Application Programming Guide“ for
more information.

72

72 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data Facility Sort (DFSORT).

DFSORT sample JCL.

//JS10 EXEC PGM=SORT,
// PARM=sort parms...
The EXEC statement invokes DFSORT via SORT or ICEMAN entry point names and
passes an optional PARM field value (ABEND, AVRGLEN, DYNALLOC, FILSZ, LIST,
MSGPRT, SIZE, SKIPREC, VERIFY, and others).

//STEPLIB DD DSN=...,DISP=SHR
This DD is only needed if DFSORT is not on the linklist, or if you are using a MODS
statement that names STEPLIB as the library from which the sort exits are to be
fetched.

//SORTLIB DD DSN=...,DISP=SHR
This DD is needed if you are using tape drives as sort work units, or if a merge
operation couldn't use the BLOCKSET merge method.

//DFSPARM DD *
 sort parms and sort control statements described below...
This DD is optional if you want to provide both the EXEC PARM options and the
control statements together from one source. This is a help when you are calling
DFSORT from another program.

See MCOE.EDU.JCL.JCL(DFSORT).

73

73 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data Facility Sort (DFSORT).

DFSORT sample JCL - continuation.

//SYMNAMES DD DSN=...,DISP=SHR
Defines the SYMNAMES data set containing statements to be used for symbol
processing. Required only if symbol processing is to be performed.

//SYMNOUT DD DSN=...,DISP=SHR
Defines the data set in which SYMNAMES statements and the symbol table are to be
listed. Optional if SYMNAMES DD is specified. Otherwise ignored.

//SYSOUT DD SYSOUT=*
This DD statement is required because DFSORT messages are written to this file.

//SORTIN DD DSN=input..DSN.to.sort,
// DISP=SHR
This required DD statement points to the input for a sort operation. The input file
can be a sequential file or PDS member, or a VSAM data set. Concatenated non-
VSAM files are supported if they all have the same RECFM with the largest block
size first in the concatenation.

74

74 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data Facility Sort (DFSORT).

DFSORT sample JCL - continuation.

//SORTINnn DD DSN=input..DSN.to.sort,
// DISP=SHR
Identifies one of the pre-sorted input files for a merge operation. 'nn' is a number
in the range 01 through 99. SORTINnn files can't be concatenated. All SORTINnn
files have to have the same LRECL if fixed-length records are used.

//SORTOUT DD DSN=sorted.output.dsn,
// DISP=SHR
Identifies the output file for both sort and merge operations. This can be a
sequential file, a PDS member, or a VSAM file.

//SORTWKnn DD UNIT=SYSDA,DISP=SHR,
// SPACE=(TRK,(30,30),RLSE)
Defines sort work files, where 'nn' is a suffix in the range 01 through 32.
SORTWKnn files aren't needed if sorting a small data set whose records will all fit in
storage at once, or if you told DFSORT to obtain its sort work files dynamically via
the DYNALLOC parameter on an OPTION or SORT control statement.

75

75 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data Facility Sort (DFSORT).

DFSORT sample JCL - continuation.

//outfil DD UNIT=SYSDA,DISP=SHR,
// SPACE=(TRK,(30,30),RLSE)
The OUTFIL DD statements describe the characteristics of the data sets in which the
processed (sorted, merged, copied) records are to be placed and indicate their
location.
Although the ddname SORTOUT can actually be used for an OUTFIL data set, the
term "SORTOUT" will be used to denote the single non-OUTFIL output data set.
Simply, you can specify different DDname if you do not want to use SORTOUT.

//SYSIN DD *
 sort control statements described below...
The control statements for DFSORT are input from this file. If DFSORT is
dynamically invoked from a PL/1 or COBOL program, the SORTCNTL DD is used to
override the control statements passed by the invoking program.

//SORTCNTL DD DSN=...,DISP=SHR
 sort control statements described below...
Defines the data set from which additional or changed DFSORT control statements
can be read when DFSORT is program-invoked. It is the same as SYSIN DD but
control statement are saved in data set.

76

76 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data Facility Sort (DFSORT).

DFSORT sample JCL - continuation.

//SORTCKPT DD DSN=CHECKPT,UNIT=TAPE,
// DISP=(,KEEP),VOL=SER=ABC123
This DD statement allocates a sequential file to be used as the checkpoint data set
when sort checkpointing is requested via the CKPT parameter on an OPTION or
SORT control statement.

//SORTSNAP DD SYSOUT=*
SNAP dump output.

//SYSUDUMP DD SYSOUT=*
User dump output.

//SYSMDUMP DD SYSOUT=*
Machine dump output.

//SYSABEND DD SYSOUT=*
Abend dump output.

77

77 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data Facility Sort (DFSORT).

DFSORT sample JCL - continuation.

//SORTDIAG DD DUMMY
The presence of this DD statement makes DFSORT write all messages (including
special diagnostics) to the SYSOUT file. The SORTDIAG DD should be used with
CAUTION since its usage substantially degrades DFSORT performance.

78

78 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data Facility Sort (DFSORT).

DFSORT control statements – SORT.

The SORT control statement is used to initiate a sort and describe
which field(s) in each record are to be used as sort fields. The
format of the SORT control statement is:

SORT FIELDS=(pos,length,format,sequence,...) |
 FIELDS=(pos,length,sequence,...),FORMAT=format |
 FIELDS={(} COPY {)} |
 {,CKPT}
 {,DYNALLOC{=(d | ,n | d,n | OFF)}}
 {,EQUALS | ,NOEQUALS}
 {,FILSZ={n | En | Un} }
 {,SIZE={n | En | Un} }
 {,SKIPREC=n}
 {,STOPAFT=n}
 {,Y2PAST={s | f}

79

79 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data Facility Sort (DFSORT).

DFSORT control statements – RECORD.

The RECORD statement tells DFSORT the record format and
lengths of the records in the input file. You only need a RECORD
statement if the INPUT is from a VSAM file. The format of the
RECORD control statement is:

RECORD TYPE={F | D},LENGTH=(len1{,len2,len3}) |
 TYPE=V,LENGTH=(len1{,len2,len3,len4,len5,len6,len7})

80

80 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data Facility Sort (DFSORT).

DFSORT control statements – MERGE.

The MERGE control statement requests a merge operation. The
MERGE control statement is similar to the SORT control statement,
but a few SORT parameters are not needed. The format of the
MERGE statement is:

MERGE FIELDS=(pos,length,format,sequence,...) |
 FIELDS=(pos,length,sequence,...),FORMAT=format |
 FIELDS={(} COPY {)}
 {,EQUALS | ,NOEQUALS}
 {,FILES=n}
 {,FILSZ=n | ,SIZE=n}
 {,SKIPREC=n}
 {,STOPAFT=n}
 {,Y2PAST={s | f}

81

81 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data Facility Sort (DFSORT).

DFSORT control statements – END.

The END statement tells DFSORT to stop reading the input control
statement data set; it marks a logical 'end-of-file' on the
control statement input. You can insert an END statement to make
DFSORT ignore control statements after the END statement.

82

82 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data Facility Sort (DFSORT).

DFSORT control statements – OPTIONS.

The OPTION control statement is used to set or override various
DFSORT execution options. Some of the options that you can set
on the OPTION control statement can also be set via the JCL
PARM= field or on a SORT or MERGE control statement. The format
of the OPTION statement is:

OPTION {ARESALL={ n | nK | nM} }
 {,ARESINV={n | nK | nM}
 {,AVGRLEN=n}
 ...
 ...
 many others
 ...
 ...

83

83 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data Facility Sort (DFSORT).

DFSORT control statements – INCLUDE.

The INCLUDE control statement is used to establish selection
criteria for the records to be included in the output data set.
You can include a record by comparing the contents of its fields
to a constant or to another field in the record. The format of the
INCLUDE statement is:

INCLUDE COND=({expression,{{AND | OR}|{ALL | NONE}},expression},...)
{,FORMAT=x}

84

84 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data Facility Sort (DFSORT).

DFSORT control statements – OMIT.

The OMIT control statement is used to establish selection
criteria for the records to be omitted from the output data set.
You can omit a record by comparing the contents of its fields
to a constant or to another field in the record. The format of the
OMIT statement is:

OMIT COND=({expression,{{AND | OR}|{ALL | NONE}},expression},...)
{,FORMAT=x}

85

85 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Data Facility Sort (DFSORT).

DFSORT control statements – ALTSEQ.

The ALTSEQ statement tells DFSORT to change the collating
sequence for some specified character(s). The ALTSEQ process
causes degraded performance. The format of the ALTSEQ
statement:

ALTSEQ CODE=(ccpp{,ccpp...})

See MCOE.EDU.JCL.JCL(DFSALTQ).

86

86 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The shortest program in the World.

One more special utility – IEFBR14.

The only function of this program is to provide a zero (0) completion code. It is
used as a safe vehicle to "execute JCL.“ For example, consider the following
job:

//DELPDS1 EXEC PGM=IEFBR14

//DD3 DD DISP=(MOD,DELETE,DELETE),DSN=KOTMI01.TEST.PDS,

// SPACE=(TRK,(0,0,0))

//CREPDS1 EXEC PGM=IEFBR14

//DD4 DD DISP=(NEW,CATLG,DELETE),

// DSN=KOTMI01.TEST.PDS,SPACE=(TRK,(5,2,10)),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=32720)

This is a useful job although the program that is executed (IEFBR14) does
nothing. While preparing to run the job, the initiator deletes
KOTMI01.TEST.PDS in step DELPDS1 and allocates KOTMI01.TEST.PDS in
step CREPDS1 and keeps the data set when the job ends. The DD names
DD3 and DD4 have no meaning and are used because the syntax of a DD
statement requires a DD name.

IEFBR14 is not a utility, in the sense that it is not included in the Utilities
manual.

87

87 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Sample utility application.

Unit summary.

Now that you have completed this unit, you should be able to:

• Determine the job stream.

• Print sequential data sets.

• Edit sequential data sets.

• Convert input into a PDS.

• Maintain source libraries.

• List PDS directories.

• Copy PDS or PDSE members.

• Sort data.

	 JCL Chapter c4 Sample utility application
	Job Control Language
	Snímek 3
	Snímek 4
	Sample utility application.
	Snímek 6
	Snímek 7
	Determining the job stream.
	Snímek 9
	Snímek 10
	Print sequential data sets.
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Maintaining source libraries.
	Snímek 19
	Snímek 20
	Snímek 21
	Snímek 22
	Snímek 23
	Snímek 24
	Snímek 25
	Snímek 26
	Snímek 27
	Snímek 28
	Snímek 29
	Listing PDS directories.
	Snímek 31
	Snímek 32
	Snímek 33
	Snímek 34
	Snímek 35
	Snímek 36
	Snímek 37
	IEBCOPY Library copy program.
	Snímek 39
	Snímek 40
	Snímek 41
	Snímek 42
	Snímek 43
	Snímek 44
	Snímek 45
	Snímek 46
	Snímek 47
	Snímek 48
	Snímek 49
	Snímek 50
	Data facility data set services – DFDSS.
	Data facility data set services - DFDSS.
	Snímek 53
	Snímek 54
	Snímek 55
	Snímek 56
	Snímek 57
	Snímek 58
	Snímek 59
	Snímek 60
	Snímek 61
	Snímek 62
	Snímek 63
	Snímek 64
	Snímek 65
	Snímek 66
	Snímek 67
	Snímek 68
	Snímek 69
	Snímek 70
	Data Facility Sort (DFSORT).
	Snímek 72
	Snímek 73
	Snímek 74
	Snímek 75
	Snímek 76
	Snímek 77
	Snímek 78
	Snímek 79
	Snímek 80
	Snímek 81
	Snímek 82
	Snímek 83
	Snímek 84
	Snímek 85
	The shortest program in the World.
	Snímek 87

