
JCL

 Chapter b3
Modifying EXEC parameters

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Job Control Language

Chapter a1. Introduction to JCL

Chapter a2. Coding JOB statements

Chapter a3. Coding EXEC statements

Chapter a4. Coding DD statements

Chapter a5. Analyzing job output

Chapter a6. Conditional processing

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Job Control Language

Chapter b1. Using special DD statements

Chapter b2. Introducing procedures

Chapter b3. Modifying EXEC parameters

Chapter b4. Modifying DD parameters

Chapter b5. Determining the effective JCL

Chapter b6. Symbolic parameters

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Job Control Language

Chapter c1. Nested procedures

Chapter c2. Cataloging procedures

Chapter c3. Using utility programs

Chapter c4. Sample utility application

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Modifying EXEC parameters.

Chapter b3

Modifying EXEC parameters

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Modifying EXEC parameters.

Unit introduction.

Before using a procedure it is essential to ensure that it meets all
the processing requirements. This might involve some minor
alterations to the procedure to ensure that it has all the
requirements to execute the job.

This unit describes how to alter EXEC statement parameters at the
time of job submission. The information contained in this unit can
be applied to both in-stream and cataloged procedures.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Modifying EXEC parameters.

Course objectives.

Be able to:

• Specify what factors determine if a procedure meets the
requirements of a job.

• Invoke a procedure, making temporary alterations to it if
necessary.

• Add, override or nullify parameters on procedure step EXEC
statements.

• Correctly sequence multiple changes to EXEC statement
parameters.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Analyzing procedures.

Identifying analysis criteria.

A procedure listing is obtained and

examined to ensure that it meets

the following two criteria:

• The procedure invokes the proper

programs in the desired sequence.

• Most of the DD statements are

usable without major alteration.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Analyzing procedures.

Identifying analysis criteria – an example.

Consider a case in which a company

buys goods wholesale from several

manufacturers and markets them

retail to other customers.

Each week the customer order

department creates a transaction file

that contains new customer orders.

A list of orders is sent to the

warehouse and an invoice is sent to

each customer. The order list and

associated invoices are printed once

a week.

Continued…

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Analyzing procedures.

Identifying analysis criteria – an example.

A program PROG1 checks the weekly

input transactions against entries in

a master customer data set. Valid

transactions are written to a new

data set used as input for another

program PROG2.

PROG1 refers to the following data

sets:

• DD1: Input transactions.

• DD2: Master customer data set.

• DD3: Transaction exception report.

• DD4: Set of valid transactions that
are passed to PROG2.

Continued…

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Analyzing procedures.

Identifying analysis criteria – an example.

PROG2 reads the valid transactions

passed from PROG1 and creates an

order list/invoice for each customer.

PROG2 refers to the following data

sets:

• DD5: Set of valid transactions
passed from PROG1.

• DD6: Order list/invoice for each
customer.

Continued…

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Analyzing procedures.

Identifying analysis criteria – an example.

Shown on the right is the procedure

named TRANSACT that is used to

accomplish this task.

A procedure listing is obtained to

determine:

• If it uses the required programs in

the required sequence.

• If it uses appropriate data sets.

//PSTEP1 EXEC PGM=PROG1,TIME=(1,30)
//DD1 DD DSN=INTRAN,DISP=SHR
//DD2 DD DSN=MASTER,DISP=SHR
//DD3 DD SYSOUT=A
//DD4 DD DSN=&&VALID,
// UNIT=SYSDA,
// DISP=(NEW,PASS),
// SPACE=(TRK,(1,1))
//PSTEP2 EXEC PGM=PROG2,TIME=5
//DD5 DD DSN=&&VALID,
// DISP=(OLD,DELETE)
//DD6 DD SYSOUT=A

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Analyzing procedures.

Are we on track?

Based on the analysis of the JCL in the previous example, do you
think this is an appropriate procedure for the task, as described?

A. No, because not all data sets are taken into consideration.

B. There is not enough information to decide.

C. Yes, because both criteria are met.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Analyzing procedures.

Analysis explanation.

The listing for the procedure
TRANSACT indicates the following:

The procedure executes 2 programs:
PROG1 and PROG2.

PROG1 uses the following data sets:

• A cataloged data set INTRAN (DD1
DD statement).

• A cataloged data set MASTER (DD2
DD statement).

• SYSOUT class A output (DD3 DD
statement).

• A temporary data set &&VALID
that is passed to PROG2 (DD4 DD
statement).

Continued…

//PSTEP1 EXEC PGM=PROG1,TIME=(1,30)
//DD1 DD DSN=INTRAN,DISP=SHR
//DD2 DD DSN=MASTER,DISP=SHR
//DD3 DD SYSOUT=A
//DD4 DD DSN=&&VALID,
// UNIT=SYSDA,
// DISP=(NEW,PASS),
// SPACE=(TRK,(1,1))
//PSTEP2 EXEC PGM=PROG2,TIME=5
//DD5 DD DSN=&&VALID,
// DISP=(OLD,DELETE)
//DD6 DD SYSOUT=A

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Analyzing procedures.

Analysis explanation.

PROG2 uses the following data sets:

• A temporary data set named

&&VALID, which is passed from

PROG1 (DD5 DD statement).

• SYSOUT class A output (DD6 DD
statement).

In addition, a TIME parameter is

included on the PSTEP1 and PSTEP2

EXEC statements to restrict the

amount of time the programs are

permitted to use the central

processor. Continued…

//PSTEP1 EXEC PGM=PROG1,TIME=(1,30)
//DD1 DD DSN=INTRAN,DISP=SHR
//DD2 DD DSN=MASTER,DISP=SHR
//DD3 DD SYSOUT=A
//DD4 DD DSN=&&VALID,
// UNIT=SYSDA,
// DISP=(NEW,PASS),
// SPACE=(TRK,(1,1))
//PSTEP2 EXEC PGM=PROG2,TIME=5
//DD5 DD DSN=&&VALID,
// DISP=(OLD,DELETE)
//DD6 DD SYSOUT=A

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Analyzing procedures.

Analysis explanation.

The TRANSACT procedure listing is

obtained and evaluated to ensure

that the procedure executes all the

required programs in the proper

sequence and the appropriate data

sets are used to accomplish the

application.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Analyzing procedures.

Are we on track?

Code a statement to invoke TRANSACT.

//JSTEP EXEC __________

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Analyzing procedures.

Are we on track?

A procedure must meet which of the following criteria?

A. Most of the DD statements are usable as they are or might need
some minor alteration.

B. The programs in the procedure are located in the same library.

C. It invokes the proper programs in the correct sequence.

D. The DD statements point to a single storage volume.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Analyzing procedures.

Glossary.

Cataloged data set
A non-temporary data set for which the system has recorded the
unit and volume on which the data set resides.

SYSOUT
A keyword that defines a print data set. It instructs the system to
queue the output on a direct-access volume.

Temporary data set
A data set which stores data needed only for the duration of the
job.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Changing EXEC parameters.

Coding changes.

A procedure listing helps a

programmer to analyze the

procedure for its usability. In some

cases a procedure might satisfy all

the basic requirements, but

might need some minor alterations.

This can be done by changing the

EXEC and DD parameters when the

procedure is invoked. However,

these alterations are applicable only

for one invocation. They do not

permanently modify the procedure

definition.

Continued…

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Changing EXEC parameters.

Coding changes.

Changes can be made to procedure

EXEC statement parameters such as

TIME, ACCT, and PARM.

The programmer can change these

parameters in the following ways:

• Override the parameters on the

procedure EXEC statement.

• Nullify parameters on the

procedure EXEC statement.

• Add parameters to the procedure

EXEC statement.

//STEP1 EXEC procedure name,parameter

//DD1 DD parameter

//DD2 DD parameter Override

Nullify

Add

New DD
Statement

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Changing EXEC parameters.

Coding changes to EXEC statement parameters.

The general form for coding changes to EXEC statement parameters is as follows

(it is shown above):

• To modify EXEC statement parameters for any procedure step, append the
procedure step to the parameter.

• If the stepname is omitted, the parameter applies to all steps of the procedure,
with the exception of the PARM parameter.

• If the stepname is omitted when adding or overriding a PARM parameter, the
PARM value only applies to the first step in the procedure.

• Any PARM parameters in subsequent steps within the procedure are nullified.

Parameter
to be

changed
Procedure

step
New

Value

PROCEDURENAME,PARAMETER.PROCSTEPNAME=VALUE/ / JSTEP EXEC

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Changing EXEC parameters.

Changing EXEC statement parameters – an example.

To illustrate an EXEC statement
override, review the procedure
definition for TRANSACT, as shown
on the right.

The time allocated for TRANSACT is
1 minute 30 seconds.

If the transaction file for the week
were much larger than usual, you
might want to change the time
allocated for the procedure to 3
minutes. You would code the
following override statement:

//JSTEP EXEC TRANSACT,TIME.PSTEP1=3

//PSTEP1 EXEC PGM=PROG1,
// TIME=(1,30)
//DD1 DD DSN=INTRAN,DISP=SHR
//DD2 DD DSN=MASTER,DISP=SHR
//DD3 DD SYSOUT=A
//DD4 DD DSN=&&VALID,
// DISP=(NEW,PASS),
// UNIT=SYSDA,
// SPACE=(TRK,(1,1))
//PSTEP2 EXEC PGM=PROG2,TIME=5
//DD5 DD DSN=&&VALID,
// DISP=(OLD,DELETE)
//DD6 DD SYSOUT=A

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Changing EXEC parameters.

Implementing coding changes.

General syntax for changes to EXEC statement parameters is as
follows:

//JSTEP EXEC procedurename,
// parameter.procstepname=value

Implementing coding changes to EXEC statements involves the
following steps:

• Follow the name of the procedure with a coma.

• Give the name of the EXEC statement parameter to be
overridden, nullified or added, followed by a period.

• Give the name of the procedure step, followed by an equal sign.

• Give the new value for the parameter if you are overriding or
adding a value. Do not code a value if the parameter is to be
nullified.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Changing EXEC parameters.

Are we on track?

Changing parameters at the time you invoke a procedure has what
effect?

A. Changes apply to the number of invocations you specify in the
JCL.

B. Changes apply to all procedures containing the edited
parameters.

C. Changes apply once only to the current invocation.

D. Changes apply to all future invocations of the procedure.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Changing EXEC parameters.

Are we on track?

Which of the following changes can you make at the time you
execute a procedure?

A. Temporarily add operands such as ACCT to procedure EXEC
statements.

B. Alter the library copy of the JCL contained in cataloged
procedure.

C. Override the PGM parameter on procedure EXEC.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Override statements.

Overriding statement parameters.

An override statement is used to

change an existing parameter

value.

Consider the TRANSACT procedure

which definition is shown on the

right. Note that the time that

PROG1 can run is 1 minute 30

seconds.

Assume that for a particular week,

the transaction file to be processed

is too large and the time that

PROG1 can run needs to be

increased to 3 minutes. Continued…

//PSTEP1 EXEC PGM=PROG1,TIME=(1,30)
//DD1 DD DSN=INTRAN,DISP=SHR
//DD2 DD DSN=MASTER,DISP=SHR
//DD3 DD SYSOUT=A
//DD4 DD DSN=&&VALID,
// DISP=(NEW,PASS),
// UNIT=SYSDA,
// SPACE=(TRK,(1,1))
//PSTEP2 EXEC PGM=PROG2,TIME=5
//DD5 DD DSN=&&VALID,
// DISP=(OLD,DELETE)
//DD6 DD SYSOUT=A

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Override statements.

Overriding statement parameters.

To override the original time

parameter, the TRANSACT can be

invoked with the following EXEC

statement:

//JSTEP EXEC TRANSACT,TIME.PSTEP1=3

The resulting JCL would behave as the

procedure on the right. Note the new

parameter in the resulting JCL.

However, this override is only

temporary. The procedure definition

does not change. The next time the

procedure is invoked, it will revert to

the original definition.

//PSTEP1 EXEC PGM=PROG1,TIME=3
//DD1 DD DSN=INTRAN,DISP=SHR
//DD2 DD DSN=MASTER,DISP=SHR
//DD3 DD SYSOUT=A
//DD4 DD DSN=&&VALID,
// DISP=(NEW,PASS),
// UNIT=SYSDA,
// SPACE=(TRK,(1,1))
//PSTEP2 EXEC PGM=PROG2,TIME=5
//DD5 DD DSN=&&VALID,
// DISP=(OLD,DELETE)
//DD6 DD SYSOUT=A

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Override statements.

Are we on track?

Following is a portion of the JCL for a procedure named MYPROC.

//PSTEP1 EXEC PGM=PROGA,TIME=(3,30)
//DD1 DD DSN=A,DISP=SHR
//DD2 DD ...
//PSTEP2 EXEC PGM=PGMB,TIME=5
//DD3 DD ...

Code a statement to invoke the procedure named MYPROC.
Assume you want to restrict the amount of time PROGA is
permitted to use the CPU to 2 minutes.

//JSTEP EXEC ______________

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Nullification statements.

Nullifying EXEC statement parameters.

A procedure can be modified by

nullifying an EXEC statement

parameter.

Most installations have values

that are assigned to EXEC statement

parameters automatically. For

example, a default value may be

assigned for the TIME parameter.

The default values may be overridden

when the procedure is defined. To

return to the installation’s default

value, the programmer can code a

statement that nullifies the

parameter.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Nullification statements.

Nullifying EXEC statement parameters.

The format for nullifying an EXEC statement parameter is:

//JSTEP EXEC procedurename,
// parameter.procstepname=

Note that in the format, the programmer specifies the parameter
and the procedure step in which it appears.

Also note that no value is assigned to the parameter in the
nullifying EXEC statement.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Nullification statements.

Nullifying EXEC statement parameters – an example.

Consider the TRANSACT procedure.

The procedure definition for PROG1

(in the procedure step PSTEP1) has

specified a CPU time of 1 minute 30

seconds for processing a transaction

file. This processing time may not be

adequate for a larger file.

If the default time is adequate, the

programmer might want to execute

the procedure taking the system

default time for PROG1.

//PSTEP1 EXEC PGM=PROG1,TIME=(1,30)
//DD1 DD DSN=INTRAN,DISP=SHR
//DD2 DD DSN=MASTER,DISP=SHR
//DD3 DD SYSOUT=A
//DD4 DD DSN=&&VALID,
// DISP=(NEW,PASS),
// UNIT=SYSDA,
// SPACE=(TRK,(1,1))
//PSTEP2 EXEC PGM=PROG2,TIME=5
//DD5 DD DSN=&&VALID,
// DISP=(OLD,DELETE)
//DD6 DD SYSOUT=A

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Nullification statements.

Nullifying EXEC statement parameters – an example.

To do this, the programmer needs to

nullify the TIME specified in the

procedure definition on the PSTEP1

EXEC statement.

The following EXEC statement which

invokes TRANSACT would nullify the

time parameter:

//JSTEP1 EXEC TRANSACT,TIME.PSTEP1=

The resulting JCL would behave as

the procedure on the right.

//PSTEP1 EXEC PGM=PROG1
//DD1 DD DSN=INTRAN,DISP=SHR
//DD2 DD DSN=MASTER,DISP=SHR
//DD3 DD SYSOUT=A
//DD4 DD DSN=&&VALID,
// DISP=(NEW,PASS),
// UNIT=SYSDA,
// SPACE=(TRK,(1,1))
//PSTEP2 EXEC PGM=PROG2,TIME=5
//DD5 DD DSN=&&VALID,
// DISP=(OLD,DELETE)
//DD6 DD SYSOUT=A

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Nullification statements.

Are we on track?

Following is a portion of the JCL for a procedure named MYPROC.

//PSTEP1 EXEC PGM=PROGA
//DD1 DD ...
//PSTEP2 EXEC PGM=PROGB,TIME=5
//DD2 DD ...

Assume that for this use of the procedure, you want to return to
the installation-defined CPU time limit for PROGB. Code the
statement to invoke MYPROC.

//JSTEP EXEC __________

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Addition statements.

Adding parameters to a procedure.

Addition statements are used to add parameters to a procedure.
The programmer can code additions on the EXEC statement that
invokes the procedure.

Consider the TRANSACT procedure. Assume that a programmer
wants to supply the current date for PROG1.

This parameter can be coded in the following way while invoking
the procedure:

//JSTEP EXEC procedurename,parameter.procstepname=value

//JSTEP EXEC TRANSACT,PARM.PSTEP1=’01/29/99’

Addition

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Addition statements.

Adding parameters to a procedure.

Parameters can be added to one or more procedure steps. In the
TRANSACT procedure, the current date can be supplied to PROG1
and PROG2 by means of the PARM parameter.

The code would be as follows:

//JSTEP EXEC TRANSACT,
// PARM.PSTEP1=’01/29/99’,
// PARM.PSTEP2=’01/29/99’

Note the following points when sequencing multiple EXEC
statement additions:

• The additions are in procedure step sequence.

• A comma separates the name of the procedure from the first
parameter addition, and the parameter additions from each other.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Addition statements.

Adding parameters to a procedure.

The TRANSACT procedure definition

is shown on the right. //PSTEP1 EXEC PGM=PROG1,TIME=(1,30)
//DD1 DD DSN=INTRAN,DISP=SHR
//DD2 DD DSN=MASTER,DISP=SHR
//DD3 DD SYSOUT=A
//DD4 DD DSN=&&VALID,
// DISP=(NEW,PASS),
// UNIT=SYSDA,
// SPACE=(TRK,(1,1))
//PSTEP2 EXEC PGM=PROG2,TIME=5
//DD5 DD DSN=&&VALID,
// DISP=(OLD,DELETE)
//DD6 DD SYSOUT=A

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Addition statements.

Adding parameters to a procedure.

//PSTEP1 EXEC PGM=PROG1,TIME=(1,30)
//DD1 DD DSN=INTRAN,DISP=SHR
//DD2 DD DSN=MASTER,DISP=SHR
//DD3 DD SYSOUT=A
//DD4 DD DSN=&&VALID,
// DISP=(NEW,PASS),
// UNIT=SYSDA,
// SPACE=(TRK,(1,1))
//PSTEP2 EXEC PGM=PROG2,TIME=5
//DD5 DD DSN=&&VALID,
// DISP=(OLD,DELETE)
//DD6 DD SYSOUT=A

The following EXEC statement

supplies the current date for PROG1

and PROG2:

//JSTEP EXEC TRANSACT,

// PARM.PSTEP1=’01/29/91’,

// PARM.PSTEP2=’01/29/91’

The resulting JCL would behave as

the procedure on the right.

//PSTEP1 EXEC PGM=PROG1,TIME=(1,30),
// PARM=’01/29/91’
//DD1 DD DSN=INTRAN,DISP=SHR
//DD2 DD DSN=MASTER,DISP=SHR
//DD3 DD SYSOUT=A
//DD4 DD DSN=&&VALID,
// DISP=(NEW,PASS),
// UNIT=SYSDA,
// SPACE=(TRK,(1,1))
//PSTEP2 EXEC PGM=PROG2,TIME=5,
// PARM=’01/29/91’
//DD5 DD DSN=&&VALID,
// DISP=(OLD,DELETE)
//DD6 DD SYSOUT=A

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Addition statements.

Are we on track?

Following is a portion of the JCL for a procedure named MYPROC.

//PSTEP1 EXEC PGM=PROGA,TIME=(1,30)
//DD1 DD ...
//PSTEP2 EXEC PGM=PROGB,TIME=5

Assume that for this invocation of MYPROC, you wish to add the
date 01/11/99 to PROGA and PROGB. (You do so through the
PARM parameter.)

Code the statement to invoke MYPROC.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Addition statements.

Are we on track?

Match the change types below with their descriptions.

1. Override A. Append existing code with new parameters.

2. Nullify B. Change a parameter back to its default value.

3. Addition C. Change an existing value.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Addition statements.

Are we on track?

Which of the following actions can you perform when a procedure
is invoked for use?

A. Override the PGM=parameter on one or more procedure EXEC
statements.

B. Override operands, such as ACCT, on procedure EXEC
statements.

C. Nullify dataset specifications on procedure DD statements.

D. Add data specifications on procedure DD statements.

E. Permanently alter the JCL in a cataloged procedure.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Sequencing multiple changes.

Combining changes.

It is possible to use EXEC statement overrides, nullifications, and
additions for one or more procedure steps at the same time. This
can be done by combining the changes on the EXEC statement that
invokes the procedure.

For example, the programmer can change the time restrictions and
can also supply the current date for a particular PSTEP.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Sequencing multiple changes.

Sequencing multiple changes.

Many changes can be made to EXEC statement parameters for one
or more procedure steps by combining them on the EXEC
statement you use to invoke the procedure.

The following rules must be followed while sequencing multiple
changes:

• Specify alterations in procedure step sequence. The
alterations for one step must be specified before the
alterations for a subsequent step.

• Within any one step, alterations can be specified in any
sequence.

• Alterations should be separated from each other by a comma.

• Multiple changes must be coded in procedure step sequence.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Sequencing multiple changes.

Sequencing multiple changes – an example.

Consider the TRANSACT procedure.

The following alterations are to be

made to the EXEC statement

operands in the procedure:

• Increase the time restriction for

PSTEP1 to 3 minutes.

• Revert to the installation-defined

TIME default for PSTEP2.

• Add a PARM parameter value of

01/29/99 for the EXEC statements in

PSTEP1 and PSTEP2.

//JSTEP EXEC TRANSACT,TIME.PSTEP1=3,
// PARM.PSTEP1=’01/29/99’,
// TIME.PSTEP2=,
// PARM.PSTEP2=’01/29/99’

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Sequencing multiple changes.

Are we on track?

For the invocation of MYPROC, assume you want to make the
following changes:

a. Revert to the installation-defined CPU time limit for PROGB.
b. Restrict the amount of time PROGA can use the CPU to 2
minutes.
c. Add a PARM value of ‘5/10/99’ to PROGA.

Put the following items in the correct sequence, following the
sequencing rules for multiple changes to produce EXEC statement
parameters.

A. // PARM.PSTEP1=‘5/10/99’

B. // TIME.PSTEP1=2

C. //JSTEP EXEC MYPROC,

D. // TIME.PSTEP2=

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Modifying EXEC parameters.

Unit summary.

Now that you have completed this unit, you should be able to:

• Specify what factors determine if a procedure meets the
requirements of a job.

• Invoke a procedure, making temporary alterations to it if
necessary.

• Add, override or nullify parameters on procedure step EXEC
statements.

• Correctly sequence multiple changes to EXEC statement
parameters.

1

JCL

 Chapter b3
Modifying EXEC parameters

2 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Job Control Language

Chapter a1. Introduction to JCL

Chapter a2. Coding JOB statements

Chapter a3. Coding EXEC statements

Chapter a4. Coding DD statements

Chapter a5. Analyzing job output

Chapter a6. Conditional processing

3 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Job Control Language

Chapter b1. Using special DD statements

Chapter b2. Introducing procedures

Chapter b3. Modifying EXEC parameters

Chapter b4. Modifying DD parameters

Chapter b5. Determining the effective JCL

Chapter b6. Symbolic parameters

4 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Job Control Language

Chapter c1. Nested procedures

Chapter c2. Cataloging procedures

Chapter c3. Using utility programs

Chapter c4. Sample utility application

5

5 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Modifying EXEC parameters.

Chapter b3

Modifying EXEC parameters

6

6 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Modifying EXEC parameters.

Unit introduction.

Before using a procedure it is essential to ensure that it meets all
the processing requirements. This might involve some minor
alterations to the procedure to ensure that it has all the
requirements to execute the job.

This unit describes how to alter EXEC statement parameters at the
time of job submission. The information contained in this unit can
be applied to both in-stream and cataloged procedures.

7

7 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Modifying EXEC parameters.

Course objectives.

Be able to:

• Specify what factors determine if a procedure meets the
requirements of a job.

• Invoke a procedure, making temporary alterations to it if
necessary.

• Add, override or nullify parameters on procedure step EXEC
statements.

• Correctly sequence multiple changes to EXEC statement
parameters.

8

8 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Analyzing procedures.

Identifying analysis criteria.

A procedure listing is obtained and

examined to ensure that it meets

the following two criteria:

• The procedure invokes the proper

programs in the desired sequence.

• Most of the DD statements are

usable without major alteration.

9

9 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Analyzing procedures.

Identifying analysis criteria – an example.

Consider a case in which a company

buys goods wholesale from several

manufacturers and markets them

retail to other customers.

Each week the customer order

department creates a transaction file

that contains new customer orders.

A list of orders is sent to the

warehouse and an invoice is sent to

each customer. The order list and

associated invoices are printed once

a week.

Continued…

10

10 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Analyzing procedures.

Identifying analysis criteria – an example.

A program PROG1 checks the weekly

input transactions against entries in

a master customer data set. Valid

transactions are written to a new

data set used as input for another

program PROG2.

PROG1 refers to the following data

sets:

• DD1: Input transactions.

• DD2: Master customer data set.

• DD3: Transaction exception report.

• DD4: Set of valid transactions that
are passed to PROG2.

Continued…

Master customer data set ensures that each transaction applies to a valid
customer. Any invalid transactions are written to a transaction exception
report.

11

11 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Analyzing procedures.

Identifying analysis criteria – an example.

PROG2 reads the valid transactions

passed from PROG1 and creates an

order list/invoice for each customer.

PROG2 refers to the following data

sets:

• DD5: Set of valid transactions
passed from PROG1.

• DD6: Order list/invoice for each
customer.

Continued…

12

12 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Analyzing procedures.

Identifying analysis criteria – an example.

Shown on the right is the procedure

named TRANSACT that is used to

accomplish this task.

A procedure listing is obtained to

determine:

• If it uses the required programs in

the required sequence.

• If it uses appropriate data sets.

//PSTEP1 EXEC PGM=PROG1,TIME=(1,30)
//DD1 DD DSN=INTRAN,DISP=SHR
//DD2 DD DSN=MASTER,DISP=SHR
//DD3 DD SYSOUT=A
//DD4 DD DSN=&&VALID,
// UNIT=SYSDA,
// DISP=(NEW,PASS),
// SPACE=(TRK,(1,1))
//PSTEP2 EXEC PGM=PROG2,TIME=5
//DD5 DD DSN=&&VALID,
// DISP=(OLD,DELETE)
//DD6 DD SYSOUT=A

13

13 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Analyzing procedures.

Are we on track?

Based on the analysis of the JCL in the previous example, do you
think this is an appropriate procedure for the task, as described?

A. No, because not all data sets are taken into consideration.

B. There is not enough information to decide.

C. Yes, because both criteria are met.

The correct answer is C.

14

14 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Analyzing procedures.

Analysis explanation.

The listing for the procedure
TRANSACT indicates the following:

The procedure executes 2 programs:
PROG1 and PROG2.

PROG1 uses the following data sets:

• A cataloged data set INTRAN (DD1
DD statement).

• A cataloged data set MASTER (DD2
DD statement).

• SYSOUT class A output (DD3 DD
statement).

• A temporary data set &&VALID
that is passed to PROG2 (DD4 DD
statement).

Continued…

//PSTEP1 EXEC PGM=PROG1,TIME=(1,30)
//DD1 DD DSN=INTRAN,DISP=SHR
//DD2 DD DSN=MASTER,DISP=SHR
//DD3 DD SYSOUT=A
//DD4 DD DSN=&&VALID,
// UNIT=SYSDA,
// DISP=(NEW,PASS),
// SPACE=(TRK,(1,1))
//PSTEP2 EXEC PGM=PROG2,TIME=5
//DD5 DD DSN=&&VALID,
// DISP=(OLD,DELETE)
//DD6 DD SYSOUT=A

15

15 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Analyzing procedures.

Analysis explanation.

PROG2 uses the following data sets:

• A temporary data set named

&&VALID, which is passed from

PROG1 (DD5 DD statement).

• SYSOUT class A output (DD6 DD
statement).

In addition, a TIME parameter is

included on the PSTEP1 and PSTEP2

EXEC statements to restrict the

amount of time the programs are

permitted to use the central

processor. Continued…

//PSTEP1 EXEC PGM=PROG1,TIME=(1,30)
//DD1 DD DSN=INTRAN,DISP=SHR
//DD2 DD DSN=MASTER,DISP=SHR
//DD3 DD SYSOUT=A
//DD4 DD DSN=&&VALID,
// UNIT=SYSDA,
// DISP=(NEW,PASS),
// SPACE=(TRK,(1,1))
//PSTEP2 EXEC PGM=PROG2,TIME=5
//DD5 DD DSN=&&VALID,
// DISP=(OLD,DELETE)
//DD6 DD SYSOUT=A

TIME[.procstepname]= {([minutes][,seconds])}

 {1440 }

 {NOLIMIT }

 {MAXIMUM }

 {0 }

16

16 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Analyzing procedures.

Analysis explanation.

The TRANSACT procedure listing is

obtained and evaluated to ensure

that the procedure executes all the

required programs in the proper

sequence and the appropriate data

sets are used to accomplish the

application.

It is assumed that data sets INTRAN and MASTER already exist and are
cataloged.

17

17 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Analyzing procedures.

Are we on track?

Code a statement to invoke TRANSACT.

//JSTEP EXEC __________

The correct answer is TRANSACT.

18

18 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Analyzing procedures.

Are we on track?

A procedure must meet which of the following criteria?

A. Most of the DD statements are usable as they are or might need
some minor alteration.

B. The programs in the procedure are located in the same library.

C. It invokes the proper programs in the correct sequence.

D. The DD statements point to a single storage volume.

The correct answer is A. and C.

19

19 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Analyzing procedures.

Glossary.

Cataloged data set
A non-temporary data set for which the system has recorded the
unit and volume on which the data set resides.

SYSOUT
A keyword that defines a print data set. It instructs the system to
queue the output on a direct-access volume.

Temporary data set
A data set which stores data needed only for the duration of the
job.

20

20 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Changing EXEC parameters.

Coding changes.

A procedure listing helps a

programmer to analyze the

procedure for its usability. In some

cases a procedure might satisfy all

the basic requirements, but

might need some minor alterations.

This can be done by changing the

EXEC and DD parameters when the

procedure is invoked. However,

these alterations are applicable only

for one invocation. They do not

permanently modify the procedure

definition.

Continued…

Some of the minor alterations to a procedure may involve, changing the data
set names or the time for which the program uses the CPU.

21

21 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Changing EXEC parameters.

Coding changes.

Changes can be made to procedure

EXEC statement parameters such as

TIME, ACCT, and PARM.

The programmer can change these

parameters in the following ways:

• Override the parameters on the

procedure EXEC statement.

• Nullify parameters on the

procedure EXEC statement.

• Add parameters to the procedure

EXEC statement.

//STEP1 EXEC procedure name,parameter

//DD1 DD parameter

//DD2 DD parameter Override

Nullify

Add

New DD
Statement

These parameters specify such things as CPU processing time, account
information or date parameters.

22

22 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Changing EXEC parameters.

Coding changes to EXEC statement parameters.

The general form for coding changes to EXEC statement parameters is as follows

(it is shown above):

• To modify EXEC statement parameters for any procedure step, append the
procedure step to the parameter.

• If the stepname is omitted, the parameter applies to all steps of the procedure,
with the exception of the PARM parameter.

• If the stepname is omitted when adding or overriding a PARM parameter, the
PARM value only applies to the first step in the procedure.

• Any PARM parameters in subsequent steps within the procedure are nullified.

Parameter
to be

changed
Procedure

step
New

Value

PROCEDURENAME,PARAMETER.PROCSTEPNAME=VALUE/ / JSTEP EXEC

23

23 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Changing EXEC parameters.

Changing EXEC statement parameters – an example.

To illustrate an EXEC statement
override, review the procedure
definition for TRANSACT, as shown
on the right.

The time allocated for TRANSACT is
1 minute 30 seconds.

If the transaction file for the week
were much larger than usual, you
might want to change the time
allocated for the procedure to 3
minutes. You would code the
following override statement:

//JSTEP EXEC TRANSACT,TIME.PSTEP1=3

//PSTEP1 EXEC PGM=PROG1,
// TIME=(1,30)
//DD1 DD DSN=INTRAN,DISP=SHR
//DD2 DD DSN=MASTER,DISP=SHR
//DD3 DD SYSOUT=A
//DD4 DD DSN=&&VALID,
// DISP=(NEW,PASS),
// UNIT=SYSDA,
// SPACE=(TRK,(1,1))
//PSTEP2 EXEC PGM=PROG2,TIME=5
//DD5 DD DSN=&&VALID,
// DISP=(OLD,DELETE)
//DD6 DD SYSOUT=A

24

24 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Changing EXEC parameters.

Implementing coding changes.

General syntax for changes to EXEC statement parameters is as
follows:

//JSTEP EXEC procedurename,
// parameter.procstepname=value

Implementing coding changes to EXEC statements involves the
following steps:

• Follow the name of the procedure with a coma.

• Give the name of the EXEC statement parameter to be
overridden, nullified or added, followed by a period.

• Give the name of the procedure step, followed by an equal sign.

• Give the new value for the parameter if you are overriding or
adding a value. Do not code a value if the parameter is to be
nullified.

Changes are specified in the EXEC statement that invokes the procedure.
You can override, nullify, or add EXEC statement parameters such as PARM
or TIME on the EXEC statement to invoke the procedure. One exception is
the PGM parameter, which is the only EXEC statement parameter that cannot
be overridden or nullified. The only way to execute a procedure with a
different program is to assign a value to a symbolic PGM parameter.

25

25 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Changing EXEC parameters.

Are we on track?

Changing parameters at the time you invoke a procedure has what
effect?

A. Changes apply to the number of invocations you specify in the
JCL.

B. Changes apply to all procedures containing the edited
parameters.

C. Changes apply once only to the current invocation.

D. Changes apply to all future invocations of the procedure.

The correct answer is C.

26

26 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Changing EXEC parameters.

Are we on track?

Which of the following changes can you make at the time you
execute a procedure?

A. Temporarily add operands such as ACCT to procedure EXEC
statements.

B. Alter the library copy of the JCL contained in cataloged
procedure.

C. Override the PGM parameter on procedure EXEC.

The correct answer is A.

27

27 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Override statements.

Overriding statement parameters.

An override statement is used to

change an existing parameter

value.

Consider the TRANSACT procedure

which definition is shown on the

right. Note that the time that

PROG1 can run is 1 minute 30

seconds.

Assume that for a particular week,

the transaction file to be processed

is too large and the time that

PROG1 can run needs to be

increased to 3 minutes. Continued…

//PSTEP1 EXEC PGM=PROG1,TIME=(1,30)
//DD1 DD DSN=INTRAN,DISP=SHR
//DD2 DD DSN=MASTER,DISP=SHR
//DD3 DD SYSOUT=A
//DD4 DD DSN=&&VALID,
// DISP=(NEW,PASS),
// UNIT=SYSDA,
// SPACE=(TRK,(1,1))
//PSTEP2 EXEC PGM=PROG2,TIME=5
//DD5 DD DSN=&&VALID,
// DISP=(OLD,DELETE)
//DD6 DD SYSOUT=A

28

28 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Override statements.

Overriding statement parameters.

To override the original time

parameter, the TRANSACT can be

invoked with the following EXEC

statement:

//JSTEP EXEC TRANSACT,TIME.PSTEP1=3

The resulting JCL would behave as the

procedure on the right. Note the new

parameter in the resulting JCL.

However, this override is only

temporary. The procedure definition

does not change. The next time the

procedure is invoked, it will revert to

the original definition.

//PSTEP1 EXEC PGM=PROG1,TIME=3
//DD1 DD DSN=INTRAN,DISP=SHR
//DD2 DD DSN=MASTER,DISP=SHR
//DD3 DD SYSOUT=A
//DD4 DD DSN=&&VALID,
// DISP=(NEW,PASS),
// UNIT=SYSDA,
// SPACE=(TRK,(1,1))
//PSTEP2 EXEC PGM=PROG2,TIME=5
//DD5 DD DSN=&&VALID,
// DISP=(OLD,DELETE)
//DD6 DD SYSOUT=A

29

29 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Override statements.

Are we on track?

Following is a portion of the JCL for a procedure named MYPROC.

//PSTEP1 EXEC PGM=PROGA,TIME=(3,30)
//DD1 DD DSN=A,DISP=SHR
//DD2 DD ...
//PSTEP2 EXEC PGM=PGMB,TIME=5
//DD3 DD ...

Code a statement to invoke the procedure named MYPROC.
Assume you want to restrict the amount of time PROGA is
permitted to use the CPU to 2 minutes.

//JSTEP EXEC ______________

The correct answer is MYPROC,TIME.PSTEP1=2

30

30 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Nullification statements.

Nullifying EXEC statement parameters.

A procedure can be modified by

nullifying an EXEC statement

parameter.

Most installations have values

that are assigned to EXEC statement

parameters automatically. For

example, a default value may be

assigned for the TIME parameter.

The default values may be overridden

when the procedure is defined. To

return to the installation’s default

value, the programmer can code a

statement that nullifies the

parameter.

To nullify a parameter means to change it back to the installation-defined
default.

31

31 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Nullification statements.

Nullifying EXEC statement parameters.

The format for nullifying an EXEC statement parameter is:

//JSTEP EXEC procedurename,
// parameter.procstepname=

Note that in the format, the programmer specifies the parameter
and the procedure step in which it appears.

Also note that no value is assigned to the parameter in the
nullifying EXEC statement.

32

32 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Nullification statements.

Nullifying EXEC statement parameters – an example.

Consider the TRANSACT procedure.

The procedure definition for PROG1

(in the procedure step PSTEP1) has

specified a CPU time of 1 minute 30

seconds for processing a transaction

file. This processing time may not be

adequate for a larger file.

If the default time is adequate, the

programmer might want to execute

the procedure taking the system

default time for PROG1.

//PSTEP1 EXEC PGM=PROG1,TIME=(1,30)
//DD1 DD DSN=INTRAN,DISP=SHR
//DD2 DD DSN=MASTER,DISP=SHR
//DD3 DD SYSOUT=A
//DD4 DD DSN=&&VALID,
// DISP=(NEW,PASS),
// UNIT=SYSDA,
// SPACE=(TRK,(1,1))
//PSTEP2 EXEC PGM=PROG2,TIME=5
//DD5 DD DSN=&&VALID,
// DISP=(OLD,DELETE)
//DD6 DD SYSOUT=A

33

33 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Nullification statements.

Nullifying EXEC statement parameters – an example.

To do this, the programmer needs to

nullify the TIME specified in the

procedure definition on the PSTEP1

EXEC statement.

The following EXEC statement which

invokes TRANSACT would nullify the

time parameter:

//JSTEP1 EXEC TRANSACT,TIME.PSTEP1=

The resulting JCL would behave as

the procedure on the right.

//PSTEP1 EXEC PGM=PROG1
//DD1 DD DSN=INTRAN,DISP=SHR
//DD2 DD DSN=MASTER,DISP=SHR
//DD3 DD SYSOUT=A
//DD4 DD DSN=&&VALID,
// DISP=(NEW,PASS),
// UNIT=SYSDA,
// SPACE=(TRK,(1,1))
//PSTEP2 EXEC PGM=PROG2,TIME=5
//DD5 DD DSN=&&VALID,
// DISP=(OLD,DELETE)
//DD6 DD SYSOUT=A

34

34 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Nullification statements.

Are we on track?

Following is a portion of the JCL for a procedure named MYPROC.

//PSTEP1 EXEC PGM=PROGA
//DD1 DD ...
//PSTEP2 EXEC PGM=PROGB,TIME=5
//DD2 DD ...

Assume that for this use of the procedure, you want to return to
the installation-defined CPU time limit for PROGB. Code the
statement to invoke MYPROC.

//JSTEP EXEC __________

The correct answer is MYPROC,TIME.PSTEP2=

35

35 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Addition statements.

Adding parameters to a procedure.

Addition statements are used to add parameters to a procedure.
The programmer can code additions on the EXEC statement that
invokes the procedure.

Consider the TRANSACT procedure. Assume that a programmer
wants to supply the current date for PROG1.

This parameter can be coded in the following way while invoking
the procedure:

//JSTEP EXEC procedurename,parameter.procstepname=value

//JSTEP EXEC TRANSACT,PARM.PSTEP1=’01/29/99’

Addition

36

36 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Addition statements.

Adding parameters to a procedure.

Parameters can be added to one or more procedure steps. In the
TRANSACT procedure, the current date can be supplied to PROG1
and PROG2 by means of the PARM parameter.

The code would be as follows:

//JSTEP EXEC TRANSACT,
// PARM.PSTEP1=’01/29/99’,
// PARM.PSTEP2=’01/29/99’

Note the following points when sequencing multiple EXEC
statement additions:

• The additions are in procedure step sequence.

• A comma separates the name of the procedure from the first
parameter addition, and the parameter additions from each other.

Note that in the example, the additions are done in step sequence. PSTEP1
additions are specified before PSTEP2 additions. Also a comma separates
TRANSACT from the first parameter addition. Both the parameter additions
are also separated by a comma.

The value of the PARM parameter in the above example is a date string.
However, any character string can be assigned to a PARM parameter.

37

37 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Addition statements.

Adding parameters to a procedure.

The TRANSACT procedure definition

is shown on the right. //PSTEP1 EXEC PGM=PROG1,TIME=(1,30)
//DD1 DD DSN=INTRAN,DISP=SHR
//DD2 DD DSN=MASTER,DISP=SHR
//DD3 DD SYSOUT=A
//DD4 DD DSN=&&VALID,
// DISP=(NEW,PASS),
// UNIT=SYSDA,
// SPACE=(TRK,(1,1))
//PSTEP2 EXEC PGM=PROG2,TIME=5
//DD5 DD DSN=&&VALID,
// DISP=(OLD,DELETE)
//DD6 DD SYSOUT=A

38

38 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Addition statements.

Adding parameters to a procedure.

//PSTEP1 EXEC PGM=PROG1,TIME=(1,30)
//DD1 DD DSN=INTRAN,DISP=SHR
//DD2 DD DSN=MASTER,DISP=SHR
//DD3 DD SYSOUT=A
//DD4 DD DSN=&&VALID,
// DISP=(NEW,PASS),
// UNIT=SYSDA,
// SPACE=(TRK,(1,1))
//PSTEP2 EXEC PGM=PROG2,TIME=5
//DD5 DD DSN=&&VALID,
// DISP=(OLD,DELETE)
//DD6 DD SYSOUT=A

The following EXEC statement

supplies the current date for PROG1

and PROG2:

//JSTEP EXEC TRANSACT,

// PARM.PSTEP1=’01/29/91’,

// PARM.PSTEP2=’01/29/91’

The resulting JCL would behave as

the procedure on the right.

//PSTEP1 EXEC PGM=PROG1,TIME=(1,30),
// PARM=’01/29/91’
//DD1 DD DSN=INTRAN,DISP=SHR
//DD2 DD DSN=MASTER,DISP=SHR
//DD3 DD SYSOUT=A
//DD4 DD DSN=&&VALID,
// DISP=(NEW,PASS),
// UNIT=SYSDA,
// SPACE=(TRK,(1,1))
//PSTEP2 EXEC PGM=PROG2,TIME=5,
// PARM=’01/29/91’
//DD5 DD DSN=&&VALID,
// DISP=(OLD,DELETE)
//DD6 DD SYSOUT=A

39

39 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Addition statements.

Are we on track?

Following is a portion of the JCL for a procedure named MYPROC.

//PSTEP1 EXEC PGM=PROGA,TIME=(1,30)
//DD1 DD ...
//PSTEP2 EXEC PGM=PROGB,TIME=5

Assume that for this invocation of MYPROC, you wish to add the
date 01/11/99 to PROGA and PROGB. (You do so through the
PARM parameter.)

Code the statement to invoke MYPROC.

The correct answer is:

//JSTEP EXEC MYPROC,

// PARM.PSTEP1=’01/11/99’,

// PARM.PSTEP2=’01/11/99’

40

40 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Addition statements.

Are we on track?

Match the change types below with their descriptions.

1. Override A. Append existing code with new parameters.

2. Nullify B. Change a parameter back to its default value.

3. Addition C. Change an existing value.

The correct answer is 1-C, 2-B, and 3-A.

41

41 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Addition statements.

Are we on track?

Which of the following actions can you perform when a procedure
is invoked for use?

A. Override the PGM=parameter on one or more procedure EXEC
statements.

B. Override operands, such as ACCT, on procedure EXEC
statements.

C. Nullify dataset specifications on procedure DD statements.

D. Add data specifications on procedure DD statements.

E. Permanently alter the JCL in a cataloged procedure.

The correct answer is B., C., and D.

42

42 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Sequencing multiple changes.

Combining changes.

It is possible to use EXEC statement overrides, nullifications, and
additions for one or more procedure steps at the same time. This
can be done by combining the changes on the EXEC statement that
invokes the procedure.

For example, the programmer can change the time restrictions and
can also supply the current date for a particular PSTEP.

43

43 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Sequencing multiple changes.

Sequencing multiple changes.

Many changes can be made to EXEC statement parameters for one
or more procedure steps by combining them on the EXEC
statement you use to invoke the procedure.

The following rules must be followed while sequencing multiple
changes:

• Specify alterations in procedure step sequence. The
alterations for one step must be specified before the
alterations for a subsequent step.

• Within any one step, alterations can be specified in any
sequence.

• Alterations should be separated from each other by a comma.

• Multiple changes must be coded in procedure step sequence.

Parameters with a stepname appended must appear before any parameters
coded without appended stepnames.

44

44 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Sequencing multiple changes.

Sequencing multiple changes – an example.

Consider the TRANSACT procedure.

The following alterations are to be

made to the EXEC statement

operands in the procedure:

• Increase the time restriction for

PSTEP1 to 3 minutes.

• Revert to the installation-defined

TIME default for PSTEP2.

• Add a PARM parameter value of

01/29/99 for the EXEC statements in

PSTEP1 and PSTEP2.

//JSTEP EXEC TRANSACT,TIME.PSTEP1=3,
// PARM.PSTEP1=’01/29/99’,
// TIME.PSTEP2=,
// PARM.PSTEP2=’01/29/99’

The JCL statements on the right show how to combine these alterations on
the EXEC statement that invokes the procedure.

Note that the nullify for the TIME parameter of PSTEP2 is immediately
followed by a comma, before the next parameter.

Changes for procedure step 1 are coded before changes to procedure step 2.

45

45 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Sequencing multiple changes.

Are we on track?

For the invocation of MYPROC, assume you want to make the
following changes:

a. Revert to the installation-defined CPU time limit for PROGB.
b. Restrict the amount of time PROGA can use the CPU to 2
minutes.
c. Add a PARM value of ‘5/10/99’ to PROGA.

Put the following items in the correct sequence, following the
sequencing rules for multiple changes to produce EXEC statement
parameters.

A. // PARM.PSTEP1=‘5/10/99’

B. // TIME.PSTEP1=2

C. //JSTEP EXEC MYPROC,

D. // TIME.PSTEP2=

The correct order is C., B., A., and D.

46

46 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Modifying EXEC parameters.

Unit summary.

Now that you have completed this unit, you should be able to:

• Specify what factors determine if a procedure meets the
requirements of a job.

• Invoke a procedure, making temporary alterations to it if
necessary.

• Add, override or nullify parameters on procedure step EXEC
statements.

• Correctly sequence multiple changes to EXEC statement
parameters.

	 JCL Chapter b3 Modifying EXEC parameters
	Job Control Language
	Snímek 3
	Snímek 4
	Modifying EXEC parameters.
	Snímek 6
	Snímek 7
	Analyzing procedures.
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Changing EXEC parameters.
	Snímek 21
	Snímek 22
	Snímek 23
	Snímek 24
	Snímek 25
	Snímek 26
	Override statements.
	Snímek 28
	Snímek 29
	Nullification statements.
	Snímek 31
	Snímek 32
	Snímek 33
	Snímek 34
	Addition statements.
	Snímek 36
	Snímek 37
	Snímek 38
	Snímek 39
	Snímek 40
	Snímek 41
	Sequencing multiple changes.
	Snímek 43
	Snímek 44
	Snímek 45
	Snímek 46

