
JCL

 Chapter b1
Using special DD statements

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Job Control Language

Chapter a1. Introduction to JCL

Chapter a2. Coding JOB statements

Chapter a3. Coding EXEC statements

Chapter a4. Coding DD statements

Chapter a5. Analyzing job output

Chapter a6. Conditional processing

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Job Control Language

Chapter b1. Using special DD statements

Chapter b2. Introducing procedures

Chapter b3. Modifying EXEC parameters

Chapter b4. Modifying DD parameters

Chapter b5. Determining the effective JCL

Chapter b6. Symbolic parameters

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Job Control Language

Chapter c1. Nested procedures

Chapter c2. Cataloging procedures

Chapter c3. Using utility programs

Chapter c4. Sample utility application

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using special DD statements.

Chapter b1

 Using special DD statements

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using special DD statements.

Course objectives.

Be able to:

• Use backward reference feature with the PGM, DSN, VOL, and
DCB parameters.

• Code statements to concatenate data sets and create dummy
data sets.

• Code statements to produce storage dumps.

• Invoke procedures for frequently-used job steps.

• Analyze the components of a job log to correct common errors in
JCL code.

• Assign values to DDNAME and symbolic operands at the time of
executing a procedure.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

Job Control Language.

What is Backward Reference?

A typical JCL job step may use or

create a number of data sets, each

requiring a variety of parameter

values.

Backward reference is a coding

technique that directs the system to

copy parameter values from

preceding DD statements within the

current job.

This technique is more efficient as it

saves the programmer from

repetitive coding of information.

DD PARAMETERS

 PGM VOL

 DSN DCB

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

Types of backward references.

Four common backward references are:

• PGM Reference: Points to a previous data set to specify a
program name.

• DSN Reference: Points to a previous data set name.

• VOL Reference: Points to a previous volume serial number.

• DCB Reference: Points to DCB attributes defined in another
previous DD statement.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

Syntax for backward reference.

The general form of a backward

reference is as follows:

• To refer back to a prior DD

statement within the same step:

Keyword=*.ddname

• To refer back to a DD statement in

a prior step:

Keyword=*.stepname.ddname

• To refer back to a DD statement

contained in cataloged procedure

called by a previous step:

Keyword=*.stepname.procstep.

 ddname

 keyword=*.ddname
 or
 keyword=*.stepname.ddname

//JOB1

//STEP1 EXEC

//DD1 DD DSN=ABC
//DD2 DD DSN=...
//DD3 DD DSN=*.DD1

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

Are we on track?

The general form of a backward reference to a DD statement in a
previous job step is keyword =_____________.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

Are we on track?

Match the backward reference with the parameter to which it
points.

1. PGM reference A. A previous volume serial number.

2. DSN reference B. A previous data set specifying a
 program name.

3. VOL reference C. DCB attributes defined in a previous
 DD statement.

4. DCB reference D. A previous data set name.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

PGM of backward references.

What is PGM Backward Reference?

A PGM backward reference is a coding technique that points to a
prior DD statement which specifies a member of a program library.

How does this technique help?

A PGM backward reference is useful in a program development
environment, in which the output from one job step (typically a
linkage edit step) may become the program to execute in a
subsequent step. In such a case, instead of naming the program,
you can code a PGM backward reference.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

Syntax for PGM backward reference.

The general form of a PGM backward reference is as follows:

//STEP EXEC PGM=*.stepname.ddname

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

PGM backward reference – example 1.

A PGM backward reference is often used following a linkage edit step, in which a
load module (program) is stored in a temporary data set. PGM backward reference
is used in coding a later step that executes the program. The reference specifies
the data set containing the program from the previous step.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

PGM backward reference – example 2.

In the example shown, the LINKEDIT

program instructs the system to place

a load module in a temporary library.

The ddname is SYSLMOD and the

data name is &&GOSET(GO).

The DISP parameter specifies that

the data is NEW and is to be PASSed

to another step.

STEPA executes the program, using a

PGM backward reference.

//LKED EXEC PGM=LINKEDIT
//SYSLMOD DD DSN=&&GOSET(GO),
// DISP=(NEW,PASS),
// UNIT=SYSDA,SPACE=(1024,(200,20,1))
//STEPA EXEC PGM=*.LKED.SYSLMOD

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

Are we on track?

Assume that in step STEPC of a job, you want to execute PROGB
using a PGM backward reference. The program is specified in
STEPA on a DD statement with ddname LKEDOUT. Complete the
following code.

//STEPC EXEC PGM=________________________

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

Are we on track?

Which of the following statements are true for a PGM backward
reference?

A. It is coded on DD statement.

B. It often follows a LINKEDIT step.

C. It points to the DD statement specifying the program you want
to execute.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

DSN backward reference.

What is DSN Backward Reference?

The DSN backward reference is a coding technique that refers to a
prior DD statement that names the data set you want to process.

How does this technique help?

This technique is useful when coding jobs that consist of several
steps, with multiple references to the same data set. The
reference can also be used to retrieve temporary data sets in
subsequent job steps, without knowing the name.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

Syntax for DSN backward reference.

The general form for the DSN backward reference is as follows:

DSN=*.stepname.ddname

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

DSN backward reference – an example.

Consider a payroll job consisting of

several steps, all referring to the

same data set. The job needs to be

executed each week using a data set

that contains the week’s

transactions.

This requires that, each week the

data set name must be changed in

the order WEEK1, WEEK2 and so on.

By using a DSN backward reference,

the data set can be retrieved each

week by changing only one DD

statement, DD1. Continued…

//STEP1 EXEC PGM=PROG1
//DD1 DD UNIT=SYSDA,
// VOL=SER=PACK12,
// SPACE=(800,(200,20,2)),
// DISP=(NEW,PASS),
// DSN=WEEK1
//STEP2 EXEC PGM=PROG2
//DD2 DD DSN=*.STEP1.DD1,
// DISP=(OLD,KEEP)

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

Are we on track?

A DSN backward reference points to a _________ in a prior DD
statement.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

Are we on track?

Code a DSN backward reference that refers to a data set in STEP2,
ddname (DD3).

DSN= ______________

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

VOL backward reference.

What is VOL Backward Reference?

A VOL backward reference is a coding technique that points to the
volume serial number of an existing data set.

How does this technique help?

The VOL backward reference is useful when you want to create a
new data set on the same volume on which an existing data set
resides, but you do not know the volume identification.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

Syntax for VOL backward reference.

The general form of the VOL backward reference is shown below:

//ddname DD …VOL=REF=dsname

or

//ddname DD …VOL=REF=*.stepname.procstepname.ddname

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

VOL backward reference – example 1.

Consider an example where PROGA creates and catalogs a data
set named XYZ. XYZ is to reside on the same volume as an
existing, previously catalogued data set named ABC.

To refer the system to data set ABC, a VOL backward reference can
be coded as follows:

//STEP1 EXEC PGM=PROGA
//DD1 DD DSN=XYZ,
// DISP=(NEW,CATLG),
// VOL=REF=ABC

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

VOL backward reference – example 2.

In this example the backward

reference refers to a specific volume

serial number coded on a prior DD

statement.

The data set XYZ will be created on

the volume referred to by the DD

statement DD2 (volume 123456).

//STEPA EXEC PGM=PROGA
//DD2 DD DSN=ABC,VOL=SER=123456,
// DISP=SHR,UNIT=SYSDA
//DD1 DD DSN=XYZ,
// DISP=(NEW,CATLG),
// VOL=REF=*.DD2,…

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

Are we on track?

Code a VOL backward reference when:

data set XXX will reside on the same volume as data set YYY.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

Are we on track?

Code a VOL backward reference when:

data set XXX will be created on the volume identified in the DD
statement with ddname DD1.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

Are we on track?

Code a VOL backward reference when:

data set XXX will be created on the volume identified in STEPC as
DD2.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

Are we on track?

Match the underlined statements in the code with the definitions in
the column on the right.

1. VOL=REF=LMN A. stepname.ddname

2. VOL=REF=*.DD1 B. dsname

3. VOL=REF=*.STEP1.DD1 C. ddname

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

DCB backward reference.

What is DCB Backward Reference?

DCB backward reference is a coding technique that allows you to
copy a list of attributes from a prior DD statement in the same or
previous job step.

How does this technique help?

This coding technique can be used to ensure that the DCB
parameters are consistent within the job.

It can also be used to override or add to the subparameters coded
on a previous statement.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

Syntax for DCB backward reference.

The general form is as follows:

//ddname DD

 DCB=*.stepname.ddname

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

DCB backward reference – an example.

Assume that in STEP2 you want to

create a data set with the same

parameters as a data set in STEP1.

The code shown ensures that the

attributes on the DD2 statement are

the same as those on the DD1

statement.

//STEP1 EXEC PGM=PROG1
//DD1 DD DCB=(RECFM=FB,
// LRECL=80,
// BLKSIZE=800)...
//STEP2 EXEC PGM=PROG2
//DD2 DD DCB=*.STEP1.DD1,...

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

DCB backward reference - overriding.

A DCB backward reference can also

be used to override or add to the

subparameters coded on a previous

statement. The format for overriding

a previous statement is as follows:

DCB=(*.stepname.ddname,list-of

attributes)

The values of the DCB parameters

being referred will be overridden by

the values that are being coded. Any

attributes that do not match the

DCB being referred will be added.

Continued…

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

DCB backward reference - overriding.

For example, notice the DCB

characteristics in statement DD1

below:

//STEP3 EXEC PGM=PROG3

//DD1 DD DCB=(RECFM=F,

// BLKSIZE=800),…

The following override statement:

//DD2 DD DCB=(*.DD1,

// RECFM=FB,LRECL=80)

would result in these DCB

characteristics:

//DD2 DD DCB=(RECFM=FB,

// LRECL=80,BLKSIZE=800)

DCB=(RECFM=FB,
 LRECL=80,
 BLKSIZE=800)

DCB=(RECFM=F,
 BLKSIZE=800)

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

Are we on track?

The portion of the job stream shown below contains JCL

statements, some of which are incomplete.

Complete those statements by coding the appropriate backward

references as follows:

The data set name in statement 4 refers to statement 2.

1. //COMPILE EXEC PGM=PL1
2. //COMPOUT DD UNIT=SYSDA,VOL=SER=PACK12,

// DISP=(NEW,PASS),DSN=&&A
3. //LKED EXEC PGM=LINKEDIT
4. //LKEDIN DD DISP=OLD,DSN=__________
5. //SYSLMOD DD DISP=(NEW,PASS),DSN=&&GOSET(GO),

// VOL=______________
6. //GO EXEC PGM=___________
7. //MYDATA DD DSN=MYDATA,DISP=(NEW,CATLG),

// VOL=SER=…,SPACE=(800,50),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)

8. //TEMP DD UNIT=SYSDA,DCB=___________

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

Are we on track?

The portion of the job stream shown above contains JCL

statements, some of which are incomplete.

Complete those statements by coding the appropriate backward

references as follows:

The volume in statement 5 refers to statement 2.

1. //COMPILE EXEC PGM=PL1
2. //COMPOUT DD UNIT=SYSDA,VOL=SER=PACK12,

// DISP=(NEW,PASS),DSN=&&A
3. //LKED EXEC PGM=LINKEDIT
4. //LKEDIN DD DISP=OLD,DSN=*.COMPILE.COMPOUT
5. //SYSLMOD DD DISP=(NEW,PASS),DSN=&&GOSET(GO),

// VOL=______________
6. //GO EXEC PGM=___________
7. //MYDATA DD DSN=MYDATA,DISP=(NEW,CATLG),

// VOL=SER=…,SPACE=(800,50),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)

8. //TEMP DD UNIT=SYSDA,DCB=___________

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

Are we on track?

The portion of the job stream shown above contains JCL

statements, some of which are incomplete.

Complete those statements by coding the appropriate backward

references as follows:

The program in statement 6 refers to statement 5.

1. //COMPILE EXEC PGM=PL1
2. //COMPOUT DD UNIT=SYSDA,VOL=SER=PACK12,

// DISP=(NEW,PASS),DSN=&&A
3. //LKED EXEC PGM=LINKEDIT
4. //LKEDIN DD DISP=OLD,DSN=*.COMPILE.COMPOUT
5. //SYSLMOD DD DISP=(NEW,PASS),DSN=&&GOSET(GO),

// VOL=REF=*.COMPILE.COMPOUT
6. //GO EXEC PGM=___________
7. //MYDATA DD DSN=MYDATA,DISP=(NEW,CATLG),

// VOL=SER=…,SPACE=(800,50),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)

8. //TEMP DD UNIT=SYSDA,DCB=___________

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

Are we on track?

The portion of the job stream shown above contains JCL

statements, some of which are incomplete.

Complete those statements by coding the appropriate backward

references as follows:

The DCB attributes in statement 8 refer to statement 7.

1. //COMPILE EXEC PGM=PL1
2. //COMPOUT DD UNIT=SYSDA,VOL=SER=PACK12,

// DISP=(NEW,PASS),DSN=&&A
3. //LKED EXEC PGM=LINKEDIT
4. //LKEDIN DD DISP=OLD,DSN=*.COMPILE.COMPOUT
5. //SYSLMOD DD DISP=(NEW,PASS),DSN=&&GOSET(GO),

// VOL=REF=*.COMPILE.COMPOUT
6. //GO EXEC PGM=*.LKED.SYSLMOD
7. //MYDATA DD DSN=MYDATA,DISP=(NEW,CATLG),

// VOL=SER=…,SPACE=(800,50),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)

8. //TEMP DD UNIT=SYSDA,DCB=___________

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

Glossary.

DD Statement
A JCL statement that describes each data set used within a job.

DDname
A unique name given to each data set used in a job step.

Job Step
The JCL statements that control the execution of a program and
request the resources needed to run the program. A job step is
identified by an EXEC statement.

Parameter Values
Information that follows a keyword parameter and an equal sign.

PGM
An EXEC statement parameter that names the program to execute.

DSN
A DD statement parameter that names the data set.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

Glossary.

VOL
A parameter on a DD statement that requests a specific volume.

DCB
Data Control Block. A parameter on a DD statement that describes
the attributes of a data set, such as block size and record format.

Load Module
An executable program that results from a link edit step.

SYSLMOD
DD name used by the linkage editor to write its output (a load
module).

DISP
Describes the status of a data set to the system and tells the
system what to do with the data set after termination of the step
or job.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Concatenating data sets.

Data set concatenation – definition.

What is data set concatenation?

A programmer can code DD statements to request that several
data sets be concatenated.

Data set concatenation enables the system to process several
separate physical data sets as one logical data set.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Concatenating data sets.

Data set concatenation – an example.

• Consider a cost ledger to produce

a monthly cost summary file. At the

year end, it is required to process all

12 monthly data sets to produce an

annual report. All the data sets are

concatenated so they can be

processed sequentially.

• In this example, the program uses

a ddname of LEDGER and the

monthly data sets are named JAN,

FEB, MAR and so on.

• The operating system draws the

concatenated data sets sequentially,

treating them as a single logical data

set.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Concatenating data sets.

Concatenation of data sets.

How to concatenate data sets?

Following steps are involved in

concatenating data sets:

1. Code a standard DD statement for

the first data set only.

2. Add a DD statement without a

ddname for each data set to be

concatenated.

3. Sequence the statements in the

order they are to be processed.

//ddname DD DSN=JAN.DATA
// DD DSN=FEB.DATA
// DD DSN=MAR.DATA

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Concatenating data sets.

Concatenation of data sets.

How concatenation is useful?

Using concatenation, a program can be run with one or several
input data sets by merely changing the DD statement.

While concatenating data sets the following points must be
considered:

• The concatenated data sets must have the same (or
compatible) DCB subparameters. Namely, RECFM, LRECL and
BLKSIZE.

• A maximum of 255 sequential and 16 partitioned data sets
can be concatenated.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Concatenating data sets.

JCL for data set concatenation – an example.

The JCL here shows the

concatenation of the monthly data

sets considered in the LEDGER

example.

The last data set concatenated to

LEDGER is DEC.

The occurrence of the ddname SUM

indicates that the data set

(ACCT.1999) is to be processed

separately from the LEDGER data

sets.

//LEDGER DD DSN=JAN,DISP=SHR
// DD DSN=FEB,DISP=SHR

 .
 .
 .

// DD DSN=DEC,DISP=SHR
//SUM DD DSN=ACCT.1999,DISP=SHR

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Concatenating data sets.

Are we on track?

Consider three data sets named, CUST.HISTORY.JUL,

CUST.HISTORY.APR and CUST.HISTORY.JAN which are to be

processed in this order. They are to be concatenated to

CUST.HISTORY.OCT, to create a master customer list.

Put the following statements in order.

A. // DD DSN=CUST.HISTORY.APR

B. //MASTCUST DD DSN=CUST.HISTORY.OCT

C. // DD DSN=CUST.HISTORY.JAN

D. // DD DSN=CUST.HISTORY.JUL

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Concatenating data sets.

Glossary.

Concatenated data sets
Data sets that are separate physically, but processed sequentially
as one logical data set.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Dummy data sets.

Overview.

Each data set that is referred by a

program should have a ddname. The

JCL for the program must contain

the corresponding DD statements.

If a data set is not coded by a DD

statement, then the program will

abnormally end (ABEND) as shown.

When an input data set is optional

for the program’s processing or

when an output data set is not

required dummy data sets can be

used.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Dummy data sets.

Dummy data set.

What is a dummy data set?

A dummy data set is a data set for which all Input or Output (I/O)
operations are bypassed.

A special DD statement, DD DUMMY, is used to ignore a data set
during the execution of a program.

How does it work?

When a data set is assigned dummy status, all I/O operations are
bypassed and device allocation, space allocation and data set
disposition are ignored.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Dummy data sets.

Specifying dummy data sets.

Dummy data sets can be specified in DD statements by doing one
of the following:

• Coding DUMMY as the first DD parameter

syntax:

//DDname DD DUMMY

• Coding DSN=NULLFILE

syntax:

//DDname DD DSN=NULLFILE

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Dummy data sets.

Dummy data sets – an example.

Consider a payroll program named

PAY that processes separate input

data sets. The ddname TIMECDS

refers to weekly time cards and the

ddname ADJUST refers to

adjustments to previous pay period

information.

The job stream must include:

//STEPA EXEC PGM=PAY

//TIMECDS DD ---

//ADJUST DD ---

 .

 .

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Dummy data sets.

Dummy data sets – an example.

Even if there are no adjustments for PAY process, DD statement
for ADJUST must be included.

To tell the system that there is no ADJUST data set code can be
written as follows:

//STEPA EXEC PGM=PAY
//TIMECDS DD ----
//ADJUST DD DUMMY

If the data set described by the DD statement named ADJUST is
referred to by the PAY program, an immediate end-of-file occurs.
The program will continue as if it has processed the entire data
set.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Dummy data sets.

Are we on track?

You can specify a dummy data set by coding DSN=____________

on the DD statement.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Storage dumps.

Storage dumps.

What are Storage Dumps?

When a program abnormally

terminates, storage dumps are used

as a debugging tool to find clues to

the cause for abnormal ending.

Storage dumps are not the most

effective debugging tool.

The main drawbacks of storage

dumps are:

• They are difficult to read since

they are in hexadecimal code.

• Printing storage dumps is time

consuming.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Storage dumps.

Special DDnames.

These reserved ddnames request storage dumps in the event that
a program terminates abnormally:

SYSUDUMP: Requests a formatted dump of the processing
 program area. It is most generally used for
 debugging problem programs.

SYSABEND: Requests a formatted dump of the processing
 program area, system programs and the system
 control blocks. It is often spooled for printing,
 although it may be written onto any output device.

SYSMDUMP: Requests an unformatted dump of the processing
 program area and the system nucleus in machine
 readable form. It is generally directed to tape (or to
 direct access storage) to allow subsequent
 processing by a dump analysis utility.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Storage dumps.

Handling storage dumps.

It is necessary to plan ahead for a

possible storage dump.

To obtain a dump, the SYSUDUMP,

SYSABEND, or SYSMDUMP DD

statements must be coded in the JCL for

each job step from which a dump needs

to be obtained.

The example shown uses SYSUDUMP

DD statement.

If STEP1 or STEP2 terminates

abnormally, the system creates a dump

of the program storage area.

//STEP1 EXEC PGM=PROG1
//SYSDUMP DD SYSOUT=X
//DD1 DD ...
//STEP2 EXEC PGM=PROG2
//SYSUDUMP DD SYSOUT=X

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Storage dumps.

Are we on track?

Match the special ddname with its function

1. SYSABEND A. Requests an unformatted dump in

 machine-readable form of the processing

 program area and the system nucleus.

2. SYSMDUMP B. Requests a formatted dump of the

 processing program area and of the

 system control blocks.

3. SYSUDUMP C. Requests a formatted dump of the

 processing program area.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using special DD statements.

Unit summary.

Now that you have completed this unit, you should be able to:

• Code a DD statement to use information from preceding JCL
statements.

• Identify the purpose of data set concatenation.

• Code the JCL to concatenate a data set.

• Code a DD statement to indicate that a data set is to be ignored
for the current program execution.

• Identify the purpose of special ddnames.

1

JCL

 Chapter b1
Using special DD statements

2 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Job Control Language

Chapter a1. Introduction to JCL

Chapter a2. Coding JOB statements

Chapter a3. Coding EXEC statements

Chapter a4. Coding DD statements

Chapter a5. Analyzing job output

Chapter a6. Conditional processing

3 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Job Control Language

Chapter b1. Using special DD statements

Chapter b2. Introducing procedures

Chapter b3. Modifying EXEC parameters

Chapter b4. Modifying DD parameters

Chapter b5. Determining the effective JCL

Chapter b6. Symbolic parameters

4 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Job Control Language

Chapter c1. Nested procedures

Chapter c2. Cataloging procedures

Chapter c3. Using utility programs

Chapter c4. Sample utility application

5

5 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using special DD statements.

Chapter b1

 Using special DD statements

6

6 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using special DD statements.

Course objectives.

Be able to:

• Use backward reference feature with the PGM, DSN, VOL, and
DCB parameters.

• Code statements to concatenate data sets and create dummy
data sets.

• Code statements to produce storage dumps.

• Invoke procedures for frequently-used job steps.

• Analyze the components of a job log to correct common errors in
JCL code.

• Assign values to DDNAME and symbolic operands at the time of
executing a procedure.

7

7 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

Job Control Language.

What is Backward Reference?

A typical JCL job step may use or

create a number of data sets, each

requiring a variety of parameter

values.

Backward reference is a coding

technique that directs the system to

copy parameter values from

preceding DD statements within the

current job.

This technique is more efficient as it

saves the programmer from

repetitive coding of information.

DD PARAMETERS

 PGM VOL

 DSN DCB

8

8 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

Types of backward references.

Four common backward references are:

• PGM Reference: Points to a previous data set to specify a
program name.

• DSN Reference: Points to a previous data set name.

• VOL Reference: Points to a previous volume serial number.

• DCB Reference: Points to DCB attributes defined in another
previous DD statement.

9

9 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

Syntax for backward reference.

The general form of a backward

reference is as follows:

• To refer back to a prior DD

statement within the same step:

Keyword=*.ddname

• To refer back to a DD statement in

a prior step:

Keyword=*.stepname.ddname

• To refer back to a DD statement

contained in cataloged procedure

called by a previous step:

Keyword=*.stepname.procstep.

 ddname

 keyword=*.ddname
 or
 keyword=*.stepname.ddname

//JOB1

//STEP1 EXEC

//DD1 DD DSN=ABC
//DD2 DD DSN=...
//DD3 DD DSN=*.DD1

You will learn more about cataloged procedures in Unit 2 and Unit 3.
The keyword in each statement is either PGM, DSN, VOL or DCB.

10

10 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

Are we on track?

The general form of a backward reference to a DD statement in a
previous job step is keyword =_____________.

The correct answer is *.stepname.ddname

11

11 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

Are we on track?

Match the backward reference with the parameter to which it
points.

1. PGM reference A. A previous volume serial number.

2. DSN reference B. A previous data set specifying a
 program name.

3. VOL reference C. DCB attributes defined in a previous
 DD statement.

4. DCB reference D. A previous data set name.

The correct answers is: 1 – B, 2 – D, 3 – A, and 4 – C.

12

12 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

PGM of backward references.

What is PGM Backward Reference?

A PGM backward reference is a coding technique that points to a
prior DD statement which specifies a member of a program library.

How does this technique help?

A PGM backward reference is useful in a program development
environment, in which the output from one job step (typically a
linkage edit step) may become the program to execute in a
subsequent step. In such a case, instead of naming the program,
you can code a PGM backward reference.

13

13 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

Syntax for PGM backward reference.

The general form of a PGM backward reference is as follows:

//STEP EXEC PGM=*.stepname.ddname

A PGM backward reference is coded on the EXEC statement.

14

14 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

PGM backward reference – example 1.

A PGM backward reference is often used following a linkage edit step, in which a
load module (program) is stored in a temporary data set. PGM backward reference
is used in coding a later step that executes the program. The reference specifies
the data set containing the program from the previous step.

15

15 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

PGM backward reference – example 2.

In the example shown, the LINKEDIT

program instructs the system to place

a load module in a temporary library.

The ddname is SYSLMOD and the

data name is &&GOSET(GO).

The DISP parameter specifies that

the data is NEW and is to be PASSed

to another step.

STEPA executes the program, using a

PGM backward reference.

//LKED EXEC PGM=LINKEDIT
//SYSLMOD DD DSN=&&GOSET(GO),
// DISP=(NEW,PASS),
// UNIT=SYSDA,SPACE=(1024,(200,20,1))
//STEPA EXEC PGM=*.LKED.SYSLMOD

16

16 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

Are we on track?

Assume that in step STEPC of a job, you want to execute PROGB
using a PGM backward reference. The program is specified in
STEPA on a DD statement with ddname LKEDOUT. Complete the
following code.

//STEPC EXEC PGM=________________________

The correct answer is *.STEPA.LKEDOUT

17

17 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

Are we on track?

Which of the following statements are true for a PGM backward
reference?

A. It is coded on DD statement.

B. It often follows a LINKEDIT step.

C. It points to the DD statement specifying the program you want
to execute.

The correct answers are B. and C.

18

18 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

DSN backward reference.

What is DSN Backward Reference?

The DSN backward reference is a coding technique that refers to a
prior DD statement that names the data set you want to process.

How does this technique help?

This technique is useful when coding jobs that consist of several
steps, with multiple references to the same data set. The
reference can also be used to retrieve temporary data sets in
subsequent job steps, without knowing the name.

19

19 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

Syntax for DSN backward reference.

The general form for the DSN backward reference is as follows:

DSN=*.stepname.ddname

20

20 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

DSN backward reference – an example.

Consider a payroll job consisting of

several steps, all referring to the

same data set. The job needs to be

executed each week using a data set

that contains the week’s

transactions.

This requires that, each week the

data set name must be changed in

the order WEEK1, WEEK2 and so on.

By using a DSN backward reference,

the data set can be retrieved each

week by changing only one DD

statement, DD1. Continued…

//STEP1 EXEC PGM=PROG1
//DD1 DD UNIT=SYSDA,
// VOL=SER=PACK12,
// SPACE=(800,(200,20,2)),
// DISP=(NEW,PASS),
// DSN=WEEK1
//STEP2 EXEC PGM=PROG2
//DD2 DD DSN=*.STEP1.DD1,
// DISP=(OLD,KEEP)

No subsequent steps using the backward reference need to be changed since
they do not directly specify the data set name.

Note that backward reference points to the DD1 statement in STEP1. Each
week, as the data set name changes, only the one DD statement, DD1, is
changed.

21

21 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

Are we on track?

A DSN backward reference points to a _________ in a prior DD
statement.

The correct answer is DDname.

22

22 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

Are we on track?

Code a DSN backward reference that refers to a data set in STEP2,
ddname (DD3).

DSN= ______________

The correct answer is *.STEP2.DD3

23

23 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

VOL backward reference.

What is VOL Backward Reference?

A VOL backward reference is a coding technique that points to the
volume serial number of an existing data set.

How does this technique help?

The VOL backward reference is useful when you want to create a
new data set on the same volume on which an existing data set
resides, but you do not know the volume identification.

The VOL parameter specifies the media volume on which a data set resides.

24

24 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

Syntax for VOL backward reference.

The general form of the VOL backward reference is shown below:

//ddname DD …VOL=REF=dsname

or

//ddname DD …VOL=REF=*.stepname.procstepname.ddname

Code the dsname of the existing data set in the REF subparameter of the
VOL parameter for the new data set. The existing data set must be passed or
cataloged.

VOL=REF=dsname

VOL=REF=*.ddname

VOL=REF=*.stepname.ddname

VOL=REF=*.stepname.procstepname.ddname

Tells the system to obtain volume serial numbers from another data set or an
earlier DD statement. Notice that the * character is not mandatory. See JCL
Reference.

VOL=REF obtains ONLY the volume serial numbers from the referenced data
set or earlier DD statement. In particular it does not obtain the volume
sequence number, volume count, label type, or data set sequence number.

25

25 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

VOL backward reference – example 1.

Consider an example where PROGA creates and catalogs a data
set named XYZ. XYZ is to reside on the same volume as an
existing, previously catalogued data set named ABC.

To refer the system to data set ABC, a VOL backward reference can
be coded as follows:

//STEP1 EXEC PGM=PROGA
//DD1 DD DSN=XYZ,
// DISP=(NEW,CATLG),
// VOL=REF=ABC

26

26 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

VOL backward reference – example 2.

In this example the backward

reference refers to a specific volume

serial number coded on a prior DD

statement.

The data set XYZ will be created on

the volume referred to by the DD

statement DD2 (volume 123456).

//STEPA EXEC PGM=PROGA
//DD2 DD DSN=ABC,VOL=SER=123456,
// DISP=SHR,UNIT=SYSDA
//DD1 DD DSN=XYZ,
// DISP=(NEW,CATLG),
// VOL=REF=*.DD2,…

27

27 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

Are we on track?

Code a VOL backward reference when:

data set XXX will reside on the same volume as data set YYY.

The correct answer is //…VOL=REF=YYY

28

28 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

Are we on track?

Code a VOL backward reference when:

data set XXX will be created on the volume identified in the DD
statement with ddname DD1.

The correct answer is //…VOL=REF=*.DD1

29

29 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

Are we on track?

Code a VOL backward reference when:

data set XXX will be created on the volume identified in STEPC as
DD2.

The correct answer is //…DSN=XXX,VOL=REF=*.STEPC.DD2

30

30 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

Are we on track?

Match the underlined statements in the code with the definitions in
the column on the right.

1. VOL=REF=LMN A. stepname.ddname

2. VOL=REF=*.DD1 B. dsname

3. VOL=REF=*.STEP1.DD1 C. ddname

The correct answer is 1 – B, 2 – C, and 3 – A.

31

31 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

DCB backward reference.

What is DCB Backward Reference?

DCB backward reference is a coding technique that allows you to
copy a list of attributes from a prior DD statement in the same or
previous job step.

How does this technique help?

This coding technique can be used to ensure that the DCB
parameters are consistent within the job.

It can also be used to override or add to the subparameters coded
on a previous statement.

DCB parameters define the characteristics of a particular data set, such as
RECFM (record format) or BLKSIZE (block size).

When DCB backward reference is used for overriding a previous statement,
the values of the DCB parameter being referenced will be overridden by the
values that you code. Any attributes that do not match the DCB being
referenced will be added.

32

32 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

Syntax for DCB backward reference.

The general form is as follows:

//ddname DD

 DCB=*.stepname.ddname

33

33 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

DCB backward reference – an example.

Assume that in STEP2 you want to

create a data set with the same

parameters as a data set in STEP1.

The code shown ensures that the

attributes on the DD2 statement are

the same as those on the DD1

statement.

//STEP1 EXEC PGM=PROG1
//DD1 DD DCB=(RECFM=FB,
// LRECL=80,
// BLKSIZE=800)...
//STEP2 EXEC PGM=PROG2
//DD2 DD DCB=*.STEP1.DD1,...

34

34 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

DCB backward reference - overriding.

A DCB backward reference can also

be used to override or add to the

subparameters coded on a previous

statement. The format for overriding

a previous statement is as follows:

DCB=(*.stepname.ddname,list-of

attributes)

The values of the DCB parameters

being referred will be overridden by

the values that are being coded. Any

attributes that do not match the

DCB being referred will be added.

Continued…

35

35 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

DCB backward reference - overriding.

For example, notice the DCB

characteristics in statement DD1

below:

//STEP3 EXEC PGM=PROG3

//DD1 DD DCB=(RECFM=F,

// BLKSIZE=800),…

The following override statement:

//DD2 DD DCB=(*.DD1,

// RECFM=FB,LRECL=80)

would result in these DCB

characteristics:

//DD2 DD DCB=(RECFM=FB,

// LRECL=80,BLKSIZE=800)

DCB=(RECFM=FB,
 LRECL=80,
 BLKSIZE=800)

DCB=(RECFM=F,
 BLKSIZE=800)

36

36 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

Are we on track?

The portion of the job stream shown below contains JCL

statements, some of which are incomplete.

Complete those statements by coding the appropriate backward

references as follows:

The data set name in statement 4 refers to statement 2.

1. //COMPILE EXEC PGM=PL1
2. //COMPOUT DD UNIT=SYSDA,VOL=SER=PACK12,

// DISP=(NEW,PASS),DSN=&&A
3. //LKED EXEC PGM=LINKEDIT
4. //LKEDIN DD DISP=OLD,DSN=__________
5. //SYSLMOD DD DISP=(NEW,PASS),DSN=&&GOSET(GO),

// VOL=______________
6. //GO EXEC PGM=___________
7. //MYDATA DD DSN=MYDATA,DISP=(NEW,CATLG),

// VOL=SER=…,SPACE=(800,50),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)

8. //TEMP DD UNIT=SYSDA,DCB=___________

The correct answer is *.COMPILE.COMPOUT

The general form for the DSN backward reference is as follows (see slide 19):

DSN=*.stepname.ddname

37

37 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

Are we on track?

The portion of the job stream shown above contains JCL

statements, some of which are incomplete.

Complete those statements by coding the appropriate backward

references as follows:

The volume in statement 5 refers to statement 2.

1. //COMPILE EXEC PGM=PL1
2. //COMPOUT DD UNIT=SYSDA,VOL=SER=PACK12,

// DISP=(NEW,PASS),DSN=&&A
3. //LKED EXEC PGM=LINKEDIT
4. //LKEDIN DD DISP=OLD,DSN=*.COMPILE.COMPOUT
5. //SYSLMOD DD DISP=(NEW,PASS),DSN=&&GOSET(GO),

// VOL=______________
6. //GO EXEC PGM=___________
7. //MYDATA DD DSN=MYDATA,DISP=(NEW,CATLG),

// VOL=SER=…,SPACE=(800,50),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)

8. //TEMP DD UNIT=SYSDA,DCB=___________

The correct answer is REF=*.COMPILE.COMPOUT

The general form of the VOL backward reference is shown below (see slide
24):

//ddname DD …VOL=REF=dsname

or

//ddname DD …VOL=REF=*.stepname.procstepname.ddname

38

38 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

Are we on track?

The portion of the job stream shown above contains JCL

statements, some of which are incomplete.

Complete those statements by coding the appropriate backward

references as follows:

The program in statement 6 refers to statement 5.

1. //COMPILE EXEC PGM=PL1
2. //COMPOUT DD UNIT=SYSDA,VOL=SER=PACK12,

// DISP=(NEW,PASS),DSN=&&A
3. //LKED EXEC PGM=LINKEDIT
4. //LKEDIN DD DISP=OLD,DSN=*.COMPILE.COMPOUT
5. //SYSLMOD DD DISP=(NEW,PASS),DSN=&&GOSET(GO),

// VOL=REF=*.COMPILE.COMPOUT
6. //GO EXEC PGM=___________
7. //MYDATA DD DSN=MYDATA,DISP=(NEW,CATLG),

// VOL=SER=…,SPACE=(800,50),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)

8. //TEMP DD UNIT=SYSDA,DCB=___________

The correct answer is *.LKED.SYSLMOD

The general form of a PGM backward reference is as follows (see slide 13):

//STEP EXEC PGM=*.stepname.ddname

39

39 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

Are we on track?

The portion of the job stream shown above contains JCL

statements, some of which are incomplete.

Complete those statements by coding the appropriate backward

references as follows:

The DCB attributes in statement 8 refer to statement 7.

1. //COMPILE EXEC PGM=PL1
2. //COMPOUT DD UNIT=SYSDA,VOL=SER=PACK12,

// DISP=(NEW,PASS),DSN=&&A
3. //LKED EXEC PGM=LINKEDIT
4. //LKEDIN DD DISP=OLD,DSN=*.COMPILE.COMPOUT
5. //SYSLMOD DD DISP=(NEW,PASS),DSN=&&GOSET(GO),

// VOL=REF=*.COMPILE.COMPOUT
6. //GO EXEC PGM=*.LKED.SYSLMOD
7. //MYDATA DD DSN=MYDATA,DISP=(NEW,CATLG),

// VOL=SER=…,SPACE=(800,50),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)

8. //TEMP DD UNIT=SYSDA,DCB=___________

The correct answer is *.GO.MYDATA

The general form is as follows (see slide 32):

//ddname DD DCB=*.stepname.ddname

40

40 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

Glossary.

DD Statement
A JCL statement that describes each data set used within a job.

DDname
A unique name given to each data set used in a job step.

Job Step
The JCL statements that control the execution of a program and
request the resources needed to run the program. A job step is
identified by an EXEC statement.

Parameter Values
Information that follows a keyword parameter and an equal sign.

PGM
An EXEC statement parameter that names the program to execute.

DSN
A DD statement parameter that names the data set.

41

41 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using backward reference.

Glossary.

VOL
A parameter on a DD statement that requests a specific volume.

DCB
Data Control Block. A parameter on a DD statement that describes
the attributes of a data set, such as block size and record format.

Load Module
An executable program that results from a link edit step.

SYSLMOD
DD name used by the linkage editor to write its output (a load
module).

DISP
Describes the status of a data set to the system and tells the
system what to do with the data set after termination of the step
or job.

42

42 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Concatenating data sets.

Data set concatenation – definition.

What is data set concatenation?

A programmer can code DD statements to request that several
data sets be concatenated.

Data set concatenation enables the system to process several
separate physical data sets as one logical data set.

43

43 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Concatenating data sets.

Data set concatenation – an example.

• Consider a cost ledger to produce

a monthly cost summary file. At the

year end, it is required to process all

12 monthly data sets to produce an

annual report. All the data sets are

concatenated so they can be

processed sequentially.

• In this example, the program uses

a ddname of LEDGER and the

monthly data sets are named JAN,

FEB, MAR and so on.

• The operating system draws the

concatenated data sets sequentially,

treating them as a single logical data

set.

44

44 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Concatenating data sets.

Concatenation of data sets.

How to concatenate data sets?

Following steps are involved in

concatenating data sets:

1. Code a standard DD statement for

the first data set only.

2. Add a DD statement without a

ddname for each data set to be

concatenated.

3. Sequence the statements in the

order they are to be processed.

//ddname DD DSN=JAN.DATA
// DD DSN=FEB.DATA
// DD DSN=MAR.DATA

45

45 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Concatenating data sets.

Concatenation of data sets.

How concatenation is useful?

Using concatenation, a program can be run with one or several
input data sets by merely changing the DD statement.

While concatenating data sets the following points must be
considered:

• The concatenated data sets must have the same (or
compatible) DCB subparameters. Namely, RECFM, LRECL and
BLKSIZE.

• A maximum of 255 sequential and 16 partitioned data sets
can be concatenated.

If the concatenated data sets do not have the same block size, the data set
with the largest block size should be in the first DD statement.

Can I concatenate an output data set?

Yes, I can. The concatenated output data set will be allocated but a program
does not write anything to the data set.

46

46 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Concatenating data sets.

JCL for data set concatenation – an example.

The JCL here shows the

concatenation of the monthly data

sets considered in the LEDGER

example.

The last data set concatenated to

LEDGER is DEC.

The occurrence of the ddname SUM

indicates that the data set

(ACCT.1999) is to be processed

separately from the LEDGER data

sets.

//LEDGER DD DSN=JAN,DISP=SHR
// DD DSN=FEB,DISP=SHR

 .
 .
 .

// DD DSN=DEC,DISP=SHR
//SUM DD DSN=ACCT.1999,DISP=SHR

47

47 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Concatenating data sets.

Are we on track?

Consider three data sets named, CUST.HISTORY.JUL,

CUST.HISTORY.APR and CUST.HISTORY.JAN which are to be

processed in this order. They are to be concatenated to

CUST.HISTORY.OCT, to create a master customer list.

Put the following statements in order.

A. // DD DSN=CUST.HISTORY.APR

B. //MASTCUST DD DSN=CUST.HISTORY.OCT

C. // DD DSN=CUST.HISTORY.JAN

D. // DD DSN=CUST.HISTORY.JUL

The correct order is B., D., A., and C.

48

48 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Concatenating data sets.

Glossary.

Concatenated data sets
Data sets that are separate physically, but processed sequentially
as one logical data set.

49

49 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Dummy data sets.

Overview.

Each data set that is referred by a

program should have a ddname. The

JCL for the program must contain

the corresponding DD statements.

If a data set is not coded by a DD

statement, then the program will

abnormally end (ABEND) as shown.

When an input data set is optional

for the program’s processing or

when an output data set is not

required dummy data sets can be

used.

50

50 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Dummy data sets.

Dummy data set.

What is a dummy data set?

A dummy data set is a data set for which all Input or Output (I/O)
operations are bypassed.

A special DD statement, DD DUMMY, is used to ignore a data set
during the execution of a program.

How does it work?

When a data set is assigned dummy status, all I/O operations are
bypassed and device allocation, space allocation and data set
disposition are ignored.

51

51 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Dummy data sets.

Specifying dummy data sets.

Dummy data sets can be specified in DD statements by doing one
of the following:

• Coding DUMMY as the first DD parameter

syntax:

//DDname DD DUMMY

• Coding DSN=NULLFILE

syntax:

//DDname DD DSN=NULLFILE

While coding DUMMY as the first parameter, DUMMY acts as a positional
parameter. When the DUMMY or NULLFILE parameter is coded, all other
parameters on the DD statement are ignored except for DCB information.

NULLFILE is a reserved word and a data set cannot be named as NULLFILE.

52

52 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Dummy data sets.

Dummy data sets – an example.

Consider a payroll program named

PAY that processes separate input

data sets. The ddname TIMECDS

refers to weekly time cards and the

ddname ADJUST refers to

adjustments to previous pay period

information.

The job stream must include:

//STEPA EXEC PGM=PAY

//TIMECDS DD ---

//ADJUST DD ---

 .

 .

53

53 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Dummy data sets.

Dummy data sets – an example.

Even if there are no adjustments for PAY process, DD statement
for ADJUST must be included.

To tell the system that there is no ADJUST data set code can be
written as follows:

//STEPA EXEC PGM=PAY
//TIMECDS DD ----
//ADJUST DD DUMMY

If the data set described by the DD statement named ADJUST is
referred to by the PAY program, an immediate end-of-file occurs.
The program will continue as if it has processed the entire data
set.

If the program issues a READ from a dummy data set, end-of-file condition
occurs. If WRITE to a dummy data set is issued, nothing will be written.

54

54 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Dummy data sets.

Are we on track?

You can specify a dummy data set by coding DSN=____________

on the DD statement.

The correct answer is NULLFILE.

55

55 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Storage dumps.

Storage dumps.

What are Storage Dumps?

When a program abnormally

terminates, storage dumps are used

as a debugging tool to find clues to

the cause for abnormal ending.

Storage dumps are not the most

effective debugging tool.

The main drawbacks of storage

dumps are:

• They are difficult to read since

they are in hexadecimal code.

• Printing storage dumps is time

consuming.

When a program abnormally terminates, the user can often find clues to the
reason for the ABEND in the contents of the computer’s storage.

56

56 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Storage dumps.

Special DDnames.

These reserved ddnames request storage dumps in the event that
a program terminates abnormally:

SYSUDUMP: Requests a formatted dump of the processing
 program area. It is most generally used for
 debugging problem programs.

SYSABEND: Requests a formatted dump of the processing
 program area, system programs and the system
 control blocks. It is often spooled for printing,
 although it may be written onto any output device.

SYSMDUMP: Requests an unformatted dump of the processing
 program area and the system nucleus in machine
 readable form. It is generally directed to tape (or to
 direct access storage) to allow subsequent
 processing by a dump analysis utility.

57

57 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Storage dumps.

Handling storage dumps.

It is necessary to plan ahead for a

possible storage dump.

To obtain a dump, the SYSUDUMP,

SYSABEND, or SYSMDUMP DD

statements must be coded in the JCL for

each job step from which a dump needs

to be obtained.

The example shown uses SYSUDUMP

DD statement.

If STEP1 or STEP2 terminates

abnormally, the system creates a dump

of the program storage area.

//STEP1 EXEC PGM=PROG1
//SYSDUMP DD SYSOUT=X
//DD1 DD ...
//STEP2 EXEC PGM=PROG2
//SYSUDUMP DD SYSOUT=X

Notice in the example that a SYSUDUMP DD statement must be included for
each step of the job in order to obtain the storage dump for the step.

58

58 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Storage dumps.

Are we on track?

Match the special ddname with its function

1. SYSABEND A. Requests an unformatted dump in

 machine-readable form of the processing

 program area and the system nucleus.

2. SYSMDUMP B. Requests a formatted dump of the

 processing program area and of the

 system control blocks.

3. SYSUDUMP C. Requests a formatted dump of the

 processing program area.

The correct answer is 1- B, 2 – A, and 3 – C.

59

59 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Using special DD statements.

Unit summary.

Now that you have completed this unit, you should be able to:

• Code a DD statement to use information from preceding JCL
statements.

• Identify the purpose of data set concatenation.

• Code the JCL to concatenate a data set.

• Code a DD statement to indicate that a data set is to be ignored
for the current program execution.

• Identify the purpose of special ddnames.

	 JCL Chapter b1 Using special DD statements
	Job Control Language
	Snímek 3
	Snímek 4
	Using special DD statements.
	Snímek 6
	Using backward reference.
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Snímek 20
	Snímek 21
	Snímek 22
	Snímek 23
	Snímek 24
	Snímek 25
	Snímek 26
	Snímek 27
	Snímek 28
	Snímek 29
	Snímek 30
	Snímek 31
	Snímek 32
	Snímek 33
	Snímek 34
	Snímek 35
	Snímek 36
	Snímek 37
	Snímek 38
	Snímek 39
	Snímek 40
	Snímek 41
	Concatenating data sets.
	Snímek 43
	Snímek 44
	Snímek 45
	Snímek 46
	Snímek 47
	Snímek 48
	Dummy data sets.
	Snímek 50
	Snímek 51
	Snímek 52
	Snímek 53
	Snímek 54
	Storage dumps.
	Snímek 56
	Snímek 57
	Snímek 58
	Snímek 59

