
JCL

 Chapter a3
Coding EXEC statements

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Job Control Language

Chapter a1. Introduction to JCL

Chapter a2. Coding JOB statements

Chapter a3. Coding EXEC statements

Chapter a4. Coding DD statements

Chapter a5. Analyzing job output

Chapter a6. Conditional processing

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Job Control Language

Chapter b1. Using special DD statements

Chapter b2. Introducing procedures

Chapter b3. Modifying EXEC parameters

Chapter b4. Modifying DD parameters

Chapter b5. Determining the effective JCL

Chapter b6. Symbolic parameters

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Job Control Language

Chapter c1. Nested procedures

Chapter c2. Cataloging procedures

Chapter c3. Using utility programs

Chapter c4. Sample utility application

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Coding EXEC statements

Chapter a3

 Coding EXEC statements

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Coding EXEC statements

Course objectives.

Be able to:

• Code an EXEC statement to specify a program to be executed.

• Correct coding errors in an EXEC statement.

• Identify which JCL statement has caused a “PROGRAM NOT
FOUND” error message.

• Identify the system library from which programs are retrieved at
execution time.

• Identify the DD statement names used to specify a private library
from which programs are retrieved at execution time.

• Select the place in the job stream where STEPLIB and JOBLIB DD
statements should be located.

• Code a JOBLIB DD statement.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The EXEC statement

The EXEC statement.

To execute each program in a job, you need to code one EXEC
statement. Each job step begins with an EXEC statement that
identifies a program name.

The EXEC statement is used to invoke the program that you want
to execute as part of a job. In addition to this, you can also use the
EXEC statement to invoke a cataloged procedure.

 What is a cataloged procedure?

A cataloged procedure refers to a set of JCL statements that are
stored in a library and retrieved by its name.

A procedure may contain one or more EXEC statements.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The EXEC statement

The EXEC statement.

Like the JOB statement, the EXEC statement too has five fields. The EXEC

statement format includes the following:

• Identifier field (//): It occupies position 1 and 2.

• Name field: It names the step starting in position 3.

• EXEC operator field: It states the JCL statement type.

• Parameter field: It is used to state the parameters used on an EXEC
statement.

• Comment field: This field is optional.

Identifier Name Operation Parameter Comment

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The EXEC statement

The EXEC statement.

Shown here is an example where

the step name is STEP1. The

operator is EXEC and the positional

parameter is defined by

PGM=IEBUPDTE.

What is IEBUPDTE?

IEBUPDTE is a system utility

program that the system invokes

during the execution of STEP1.

The step name STEP1 identifies the

EXEC statement so that the

subsequent JCL statements can refer

to it.

//STEP1 EXEC PGM=IEBUPDTE

Step
Name

Operator

Positional
Parameter

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The EXEC statement

The step name.

Following are the coding rules for
the step name:

• The step name must begin in
position 3.

• The step name must be 1 to 8
characters in length.

• The first character in the step
name should be either alphabetic or
a national symbol. It cannot be a
number.

• Rest of the characters in the step
name can either be alphanumeric or
they can be national symbols.

• Special characters and spaces
cannot be used in a step name.

//STEP1 EXEC

//EXAMPLE4 EXEC

//RUN#2 EXEC

//STEP1+ EXEC

//EXAMPLE14 EXEC

// RUN#2 EXEC

Valid Step Names

Invalid Step Names

(Includes a special character)

(More than eight characters)

(Does not begin in position 3)

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The EXEC statement

The step name.

Shown here are two step names

STEP#FOUR and LA$JOE.

Are both the names valid step

names?

The step name LA$JOE is acceptable

because it fits all the requirements

defined in the rules for coding a step

name(the $ is one of the national

symbols).

But, STEP#FOUR is not a valid step

name because it contains more than

eight characters.

//STEP#FOUR EXEC PGM=IEFBR14

//LA$JOE EXEC PGM=IEGENER

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The EXEC statement.

Are we on track?

Which of the following step names are valid?

A. $STEP#5

B. RUN TWO

C. *STEP4

D. EXAMPLE#12

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The EXEC statement.

Glossary.

Cataloged procedure
Prepared sets of JCL statements cataloged in a procedure library.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The EXEC parameter field.

The positional parameter.

The parameter field follows the EXEC

operator and may contain multiple

parameters. The first parameter in

an EXEC statement is a positional

parameter that designates the

program or procedure the system

executes during the job step.

This positional parameter is often

coded like a keyword parameter

using either PGM= or PROC=.

//STEP1 EXEC procedure-name

//STEP2 EXEC PROC=procedure

//STEP1 EXEC PGM=program-name

Positional
Parameter

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The EXEC parameter field.

The PGM= positional parameter.

What does PGM= designate?

PGM= designates a program the system executes during the job step. Shown here
is the syntax of PGM as a positional parameter in the EXEC statement.

Payroll

//JOB1 JOB 3SPO3W,CLASS=B

//STEP1 EXEC PGM=PAYROLL

Program

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The EXEC parameter field.

Are we on track?

Code the EXEC statement using the proper operator where the step
name is STEP1 and the name of program is PAYROLL?

//JOB1 JOB 255,SMITH

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The EXEC parameter field.

The PROC= positional parameter.

What does PROC= designate?

PROC= designates a procedure the system executes. The syntax of PROC as a
positional parameter in an EXEC statement is shown here.

//LA$JOE JOB 3SPO3W,CLASS=B

//STEP1 EXEC PROC=MYPROC

Procedure

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The EXEC parameter field.

Omitting the PROC= keyword.

If you omit the PGM= or PROC=

keyword, the operating system

automatically looks for a procedure

by the specified name. Shown here

is an example of the syntax when

omitting PROC= keyword in an EXEC

statement is shown.

For example, to call a procedure

named MYPROC from a step named

STEP3, you will need to code the

EXEC statement as shown on the

right.

//STEP3 EXEC procedure-name

//STEP3 EXEC MYPROC

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The EXEC parameter field.

Are we on track?

If you leave out the PGM= or PROC= keyword when coding an
EXEC statement, what does the operating system do
automatically?

A. Searches for a procedure with the specified name.

B. Searches for a program with the specified name.

C. Searches all programs and procedures with the specified name

D. Displays an error and cause an abnormal termination.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The EXEC parameter field.

Positional parameter coding errors.

JCL errors occur if you, as a JCL

programmer fail to follow any of the

coding rules regarding the PGM and

PROC positional parameters.

For example, the misspelling of PGM

(as PGR) in the EXEC statement

shown here returns a JCL error.

//LA$JOE JOB 3SPO3W,CLASS=B

//STEP1 EXEC PGR=IEFBR14

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The EXEC parameter field.

Positional parameter coding errors.

In the example shown here, the equal sign in the parameter field is preceded and

followed by a space. The system interprets "PGM" as a procedure name and not as

a keyword for the positional parameter of the EXEC statement.

//LA$JOE JOB 3SPO3W,CLASS=B

//STEP1 EXEC PGM = IEFBR14

SYSTEM ABEND

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Additional EXEC parameters.

Procedures.

In addition to programs, you can use the EXEC statement to invoke
a cataloged procedure, which is a set of JCL statements that you
place in a library and retrieve by its name.

A procedure can contain one or more EXEC statements, with
associated DD statements.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Additional EXEC parameters.

Are we on track?

A ____________ is a set of associated EXEC and DD statements
stored in a procedure library.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Additional EXEC parameters.

Keyword parameters.

You may code keyword parameters

on the EXEC statement in any order,

following the program or procedure

name.

You can use any of the keyword

parameters shown here.

If you code one of these keyword

parameters on the EXEC statement,

the keyword parameter value will

apply only to that step.

The two keyword parameters used

most frequently with the EXEC

statement are:

• The PARM parameter.

• The COND parameter.

PGM=PROGA,keyword

ACCT

RD

DYNAMNBR

ADDRSPC

PERFORM

REGION

PARM

COND

TIME

DPRTY

CCSID

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The PARM parameter.

The PARM parameter.

What does the PARM parameter do?

The PARM parameter passes information to the executing
program. Some programs accept information from the PARM
parameter about how many times to execute.

For example, a program may need to know whether a report cycle
is "annual" or "monthly".

The records the program uses vary depending on which value is
passed to it.

Similarly, the PARM parameter can supply a password to the
program that is required before the program executes.

The syntax for the PARM parameter is:

PARM=(SUBPARAMETER,SUBPARAMETER)

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The PARM parameter.

Rules for coding the PARM parameter.

The general syntax and rules for coding the PARM parameter are:

• The PARM parameter can include up to 100 characters.

• The PARM parameter can consist of several subvalues separated
by commas.

• Subparameters must be enclosed in parentheses or apostrophes.

• Special characters must be enclosed in apostrophes.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The PARM parameter.

Are we on track?

Which EXEC statement keyword parameter passes up to 100
characters of data to a program?

A. COND

B. PERFORM

C. PARM

D. ACCT

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The PARM parameter.

Coding the PARM parameter – Example 1.

This EXEC statement passes one value (MONTHLY) as input to a program named
REPORT.

//JOB1 JOB 766,SMITH

//RUN#2 EXEC PGM=REPORT,

// PARM=MONTHLY

REPORT

PARM=MONTHLY

PARM
Parameter

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The PARM parameter.

Coding the PARM parameter – Example 2.

This EXEC statement passes the date (10-31-98) as input to the program called
REPORT. The subparameter is enclosed in apostrophes because special characters
are used.

//JOB1 JOB 766,SMITH

//RUN#2 EXEC PGM=REPORT,

// PARM=’10-31-98’

REPORT

PARM=’10-31-98’

PARM
Parameter

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The PARM parameter.

Coding the PARM parameter – Example 3.

In this example, the EXEC statement passes both the type of report (MONTHLY) and
the date (10-31-98) as subparameters of the PARM parameter. The two
subparameters are enclosed in parentheses.

//JOB1 JOB 766,SMITH

//RUN#2 EXEC PGM=REPORT,

// PARM=(MONTHLY,’10-31-98’)

REPORT

PARM=(MONTHLY,
’10-31-98’)

PARM
Parameter

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The PARM parameter.

Are we on track?

Complete the EXEC statement using the PARM parameter to pass
on both the type of report (MONTHLY) and the date (‘10-31-98’).

//JOB1 JOB 776,SMITH
//RUN#3 EXEC PGM=REPORT,_________________

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The PARM parameter.

The Loader program.

Occasionally, you might use the LOADER program when testing
programs. The LOADER creates a program module in storage and
passes control to it.

If you are coding the PARM parameter when using the LOADER,
use the special syntax as shown here:

//GO EXEC PGM=LOADER,
// PARM=(loader parameters/user program parameters)

What are the programs to which you can give the PARM parameter
to?

You can give PARM values to two programs:

• The Loader.
• The module created by the Loader.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The PARM parameter.

Are we on track?

The ________ creates a program module in storage and passes
control to it. The program then executes.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The COND parameter.

The COND parameter.

What does the COND parameter do?

To provide control over the whole job, you can code the condition
(COND) parameter on the JOB statement.
You can also code it on the EXEC statement to control an individual
step in the job.

The syntax for the COND parameter is:

COND=(code,operator)

When you use the COND parameter on an EXEC statement, the
parameter specifies the conditions that allow the system to bypass
a step by testing return codes from any or all previous steps.

If the result of any test is true, the system will bypass the step.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The COND parameter.

The COND subparameters.

As on the JOB statement, the code subparameter indicates a
return code, and the operator subparameter indicates the type of
test used for the comparison.

COND=(code,operator)
 or

COND=(code,operator,stepname)
 or

COND=(code,operator,stepname.procstepname)

What happens if you specify only the code and operator
subparameters?

If you specify only the code and operator subparameters, the test
runs for all previous return codes in the job.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The COND parameter.

The COND subparameters.

The stepname.procstepname subparameter (instead of the
stepname subparameter) compares a code value against the
return code from a specific previous procedure job step.

The actual return code value, which may range from 0 to 4095, is
compared with the return code specified in the COND parameter.

You can code up to eight comparisons. If any comparison is true,
the system bypasses the step.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The COND parameter.

COND parameter – an example.

In the example shown here, the COND parameter reads as follows:

"If 8 is greater than the return code, do not execute the EXAMPLE3 step."

The job executes the EXAMPLE3 step only if the RC is 8 or greater. If the RC is 0

through 7, the EXAMPLE3 step will be bypassed.

DELETE

//JOB1 JOB 778,SMITH

//EXAMPLE2 EXEC PGM=DELETE

//EXAMPLE3 EXEC PGM=UPDATE,

// COND=(8,GT)

//DD1 DD DSN=INPUT

COND=(8,GT)

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The COND parameter.

Are we on track?

Code a COND parameter that skips this step if any previous step
return code is less than or equal to 8.

//STEP2 EXEC PGM=UPDATE,

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The COND parameter.

COND parameter – an example.

The COND parameter in the step EXAMPLE3, includes a stepname subparameter.

This causes the COND statement to read as follows:

"If 8 is greater than the return code from step EXAMPLE2, do not execute

the EXAMPLE3 step."

DELETE

//JOB1 JOB 778,SMITH

//EXAMPLE2 EXEC PGM=DELETE

//EXAMPLE3 EXEC PGM=UPDATE,

// COND=(8,GT,EXAMPLE2)

//DD1 DD DSN=INPUT

COND=(8,GT,
EXAMPLE2)

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The COND parameter.

The COND subparameters – EVEN & ONLY.

In addition to code, operator, stepname, and procedure stepname,
the EVEN and ONLY subparameters may also be coded on the
COND parameter.

These subparameters do not apply to condition codes returned by
a program after normal termination. They relate to abnormal
termination of a prior step. Abnormal termination occurs when
unexpected conditions arise during execution of a step.

Without the use of EVEN or ONLY, a job bypasses all remaining
steps following an abnormal program termination.

The EVEN subparameter allows the current step to execute even if
any previous step terminates abnormally.

Conversely, the ONLY subparmeter allows the current step to
execute only if any previous step terminates abnormally.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The COND parameter.

EVEN subparameter – an example.

If you code COND=EVEN on an EXEC statement as shown here, the program STEP4

always executes, even if a previous step (e.g. program STEP3) in the job

terminates abnormally.

//JOB1 JOB 778,SMITH

//EXAMPLE1 EXEC PGM=STEP1

//EXAMPLE2 EXEC PGM=STEP2

//EXAMPLE3 EXEC PGM=STEP3

//EXAMPLE4 EXEC PGM=STEP4,

// COND=EVEN

//DD1 DD DSN=INPUT

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The COND parameter.

ONLY subparameter – an example.

If you code COND=ONLY on an EXEC statement as shown here, the program STEP4

will execute only if a previous step in the job terminates abnormally.

//JOB1 JOB 778,SMITH

//EXAMPLE1 EXEC PGM=STEP1

//EXAMPLE2 EXEC PGM=STEP2

//EXAMPLE3 EXEC PGM=STEP3

//EXAMPLE4 EXEC PGM=STEP4,

// COND=ONLY

//DD1 DD DSN=INPUT

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The COND parameter.

Using the EVEN & ONLY subparameters.

The EVEN and ONLY subparameters

cannot appear on the same step.

They are mutually exclusive.

However, EVEN or ONLY can be

coded in place of one of the eight RC

test allowed for each step. The order

in which tests are coded does not

matter.

For example, the two EXEC

statements shown here mean the

same thing.

//ST4 EXEC PGM=PROG7,

// COND=((10,EQ,STEP5),EVEN)

//ST4 EXEC PGM=PROG7,

// COND=(EVEN,(10,EQ,STEP5))

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The COND parameter.

Are we on track?

Which one of the following statements would you code to run the
FIXIT program only in case of an abnormal termination in the
previous step?

A. //STEP EXEC PGM=FIXIT

B. //STEP3 EXEC PGM=FIXIT,COND=EVEN

C. //STEP3 EXEC PGM=FIXIT,COND=ONLY

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The system library.

Program libraries.

In a job, each job step begins with an EXEC statement that
identifies a program name. In order to run the program in the
EXEC statement, the system searches for it in program libraries.

It will search one or more system program libraries automatically
or you can direct the system to search for the program in a private
program library.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The system library.

Steps involved in invoking a program.

When a job step requests a program, the system searches for the
program in a system library named SYS1.LINKLIB or in a list of
libraries that the installation has defined in a PARMLIB member
called LINKLIST.

LINKLIST is installation dependent and can include a number of
data sets with loadable programs searched by default.

Once the system finds a program in the SYS1.LINKLIB or any
library in LINKLIST, it invokes the program.

If the system cannot find the program, it will generate an
abnormal termination (or abend) when you try to run the job.

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The system library.

Program libraries – an example.

In the example, the programmer

wanted to execute a program called

REPORT and coded the JCL as

shown.

The operating system searches

SYS1.LINKLIB or LINKLIST for

REPART. The error messages shown

occur because REPORT was

misspelled as REPART in the JCL.

//RUN31 JOB 777,CLASS=B

//STEPA EXEC PGM=REPART

CSV003I REQUESTED MODULE REPART NOT
FOUND

CSV028I JOBNAME=RUN31 STEPNAME=STEPA

Error Message

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The system library.

Private program libraries.

You can use private libraries to

store programs.

If you want to invoke a program

called MYPROG which is stored

in a private library, you must tell

the operating system the name

of the private library by coding a

special DD statement named

JOBLIB before the first EXEC

statement in the job.

The JOBLIB DD statement

causes the system to search a

private library before searching

SYS1.LINKLIB.

//JOB1 JOB 776,SMITH

//JOBLIB DD DSN=LIBRARY,

// DISP=SHR

//STEP1 EXEC PGM=MYPROG

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The system library.

Are we on track?

From the code determine which library the system would search
first for UTILITY.

A. SMITHLIB private library.

B. SYS1.LINKLIB or LINKLIST.

C. USER1 private library.

//MYJOB1 JOB 514,SMITH

//JOBLIB DD DSN=USER1

//STEP1 EXEC PGM=UTILITY

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The STEPLIB DD statement.

The STEPLIB DD statement.

If most of the programs for a job

reside in SYS1.LINKLIB or LINKLIST

and only a few are in private

libraries, it makes more sense to

direct the system to search a private

library on a step-by-step basis.

This saves processing time by

eliminating unnecessary searching.

To search a private library directly

you use a special DD statement

called STEPLIB DD statement as

shown.

//STEP1 EXEC PGM=PROGA

//STEPLIB DD DSN=MYLIB,DISP=SHR

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The STEPLIB DD statement.

Comparison between JOBLIB and STEPLIB DD statements.

Just like a JOBLIB DD statement, the

STEPLIB DD statement searches a

private library for a specified

program.

But, the STEPLIB DD statement is in

effect only for the duration of the

step it follows.

//JOB1 JOB 777,SMITH

//STEP1 EXEC PGM=PROGA

//STEP2 EXEC PGM=MYPROG

//STEPLIB DD DSN=LIBRARY,

// DISP=SHR

//STEP3 EXEC PGM=PROGB

Continued…

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The STEPLIB DD statement.

Comparison between JOBLIB and STEPLIB DD
statements.
What if a STEPLIB and JOBLIB

both appear in a job?

In this case the STEPLIB overrides

the JOBLIB. The system ignores

JOBLIB and does not search it in the

step.

If the system does not find the

program in library specified by the

STEPLIB, it searches the system

libraries (SYS1.LINKLIB and

LINKLIST) next.

If it does not find the program there,

the job step abends.

//JOB1 JOB 77,SMITH
//JOBLIB DD DSN=USER1,
// DISP=SHR

//STEP1 EXEC PGM=MYPROG
//STEPLIB DD DSN=LIBRARY,
// DISP=SHR

Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Coding EXEC statements.

Unit summary.

Now that you have completed this unit, you should be able to:

• Code an EXEC statement to specify a program to be executed.

• Correct coding errors in an EXEC statement.

• Identify which JCL statement has caused a “PROGRAM NOT
FOUND” error message.

• Identify the system library from which programs are retrieved at
execution time.

• Identify the DD statement names used to specify a private library
from which programs are retrieved at execution time.

• Select the place in the job stream where STEPLIB and JOBLIB DD
statements should be located.

• Code a JOBLIB DD statement.

1

JCL

 Chapter a3
Coding EXEC statements

2 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Job Control Language

Chapter a1. Introduction to JCL

Chapter a2. Coding JOB statements

Chapter a3. Coding EXEC statements

Chapter a4. Coding DD statements

Chapter a5. Analyzing job output

Chapter a6. Conditional processing

3 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Job Control Language

Chapter b1. Using special DD statements

Chapter b2. Introducing procedures

Chapter b3. Modifying EXEC parameters

Chapter b4. Modifying DD parameters

Chapter b5. Determining the effective JCL

Chapter b6. Symbolic parameters

4 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Job Control Language

Chapter c1. Nested procedures

Chapter c2. Cataloging procedures

Chapter c3. Using utility programs

Chapter c4. Sample utility application

5

5 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Coding EXEC statements

Chapter a3

 Coding EXEC statements

Each job step begins with an EXEC statement. This statement identifies the
name of the program (or procedure) that has to be executed for a particular
job. You have to code an EXEC statement for each program that you have to
execute in a job.

This unit will explain to you how to be able to code a simple EXEC statement
and identify the reasons for basic JCL errors.

6

6 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Coding EXEC statements

Course objectives.

Be able to:

• Code an EXEC statement to specify a program to be executed.

• Correct coding errors in an EXEC statement.

• Identify which JCL statement has caused a “PROGRAM NOT
FOUND” error message.

• Identify the system library from which programs are retrieved at
execution time.

• Identify the DD statement names used to specify a private library
from which programs are retrieved at execution time.

• Select the place in the job stream where STEPLIB and JOBLIB DD
statements should be located.

• Code a JOBLIB DD statement.

7

7 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The EXEC statement

The EXEC statement.

To execute each program in a job, you need to code one EXEC
statement. Each job step begins with an EXEC statement that
identifies a program name.

The EXEC statement is used to invoke the program that you want
to execute as part of a job. In addition to this, you can also use the
EXEC statement to invoke a cataloged procedure.

 What is a cataloged procedure?

A cataloged procedure refers to a set of JCL statements that are
stored in a library and retrieved by its name.

A procedure may contain one or more EXEC statements.

8

8 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The EXEC statement

The EXEC statement.

Like the JOB statement, the EXEC statement too has five fields. The EXEC

statement format includes the following:

• Identifier field (//): It occupies position 1 and 2.

• Name field: It names the step starting in position 3.

• EXEC operator field: It states the JCL statement type.

• Parameter field: It is used to state the parameters used on an EXEC
statement.

• Comment field: This field is optional.

Identifier Name Operation Parameter Comment

Operation field (EXEC) can start at position 12.

Parameter field (PGM=) can start at position 18.

Comment field starts after at least one space.

9

9 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The EXEC statement

The EXEC statement.

Shown here is an example where

the step name is STEP1. The

operator is EXEC and the positional

parameter is defined by

PGM=IEBUPDTE.

What is IEBUPDTE?

IEBUPDTE is a system utility

program that the system invokes

during the execution of STEP1.

The step name STEP1 identifies the

EXEC statement so that the

subsequent JCL statements can refer

to it.

//STEP1 EXEC PGM=IEBUPDTE

Step
Name

Operator

Positional
Parameter

I can recommend: code a step name on all your EXEC statements even if
there might not be any references to those statements.

IEBUPDTE – system utility to create or modify sequential or partitioned data
sets. However, the program can be used only with data sets containing fixed-
length records of no more than 80 bytes. It is used primarily for updating
procedure, source, and macro libraries, such as those containing JCL.

10

10 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The EXEC statement

The step name.

Following are the coding rules for
the step name:

• The step name must begin in
position 3.

• The step name must be 1 to 8
characters in length.

• The first character in the step
name should be either alphabetic or
a national symbol. It cannot be a
number.

• Rest of the characters in the step
name can either be alphanumeric or
they can be national symbols.

• Special characters and spaces
cannot be used in a step name.

//STEP1 EXEC

//EXAMPLE4 EXEC

//RUN#2 EXEC

//STEP1+ EXEC

//EXAMPLE14 EXEC

// RUN#2 EXEC

Valid Step Names

Invalid Step Names

(Includes a special character)

(More than eight characters)

(Does not begin in position 3)

11

11 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The EXEC statement

The step name.

Shown here are two step names

STEP#FOUR and LA$JOE.

Are both the names valid step

names?

The step name LA$JOE is acceptable

because it fits all the requirements

defined in the rules for coding a step

name(the $ is one of the national

symbols).

But, STEP#FOUR is not a valid step

name because it contains more than

eight characters.

//STEP#FOUR EXEC PGM=IEFBR14

//LA$JOE EXEC PGM=IEGENER

12

12 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The EXEC statement.

Are we on track?

Which of the following step names are valid?

A. $STEP#5

B. RUN TWO

C. *STEP4

D. EXAMPLE#12

The correct answer is A.

B. is incorrect, as it contains a blank character.

C. is incorrect, as it starts with asterisk, a special character.

D. is incorrect, as it is longer than 8 characters.

13

13 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The EXEC statement.

Glossary.

Cataloged procedure
Prepared sets of JCL statements cataloged in a procedure library.

14

14 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The EXEC parameter field.

The positional parameter.

The parameter field follows the EXEC

operator and may contain multiple

parameters. The first parameter in

an EXEC statement is a positional

parameter that designates the

program or procedure the system

executes during the job step.

This positional parameter is often

coded like a keyword parameter

using either PGM= or PROC=.

//STEP1 EXEC procedure-name

//STEP2 EXEC PROC=procedure

//STEP1 EXEC PGM=program-name

Positional
Parameter

15

15 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The EXEC parameter field.

The PGM= positional parameter.

What does PGM= designate?

PGM= designates a program the system executes during the job step. Shown here
is the syntax of PGM as a positional parameter in the EXEC statement.

Payroll

//JOB1 JOB 3SPO3W,CLASS=B

//STEP1 EXEC PGM=PAYROLL

Program

For example, to call a program named PAYROLL from step called STEP1,
you would code the EXEC statement as shown here.

16

16 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The EXEC parameter field.

Are we on track?

Code the EXEC statement using the proper operator where the step
name is STEP1 and the name of program is PAYROLL?

//JOB1 JOB 255,SMITH

The correct answer is:

//STEP1 EXEC PGM=PAYROLL

17

17 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The EXEC parameter field.

The PROC= positional parameter.

What does PROC= designate?

PROC= designates a procedure the system executes. The syntax of PROC as a
positional parameter in an EXEC statement is shown here.

//LA$JOE JOB 3SPO3W,CLASS=B

//STEP1 EXEC PROC=MYPROC

Procedure

For example, to call a procedure named MYPROC from a step called STEP1,
code the EXEC statement as shown here.

18

18 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The EXEC parameter field.

Omitting the PROC= keyword.

If you omit the PGM= or PROC=

keyword, the operating system

automatically looks for a procedure

by the specified name. Shown here

is an example of the syntax when

omitting PROC= keyword in an EXEC

statement is shown.

For example, to call a procedure

named MYPROC from a step named

STEP3, you will need to code the

EXEC statement as shown on the

right.

//STEP3 EXEC procedure-name

//STEP3 EXEC MYPROC

19

19 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The EXEC parameter field.

Are we on track?

If you leave out the PGM= or PROC= keyword when coding an
EXEC statement, what does the operating system do
automatically?

A. Searches for a procedure with the specified name.

B. Searches for a program with the specified name.

C. Searches all programs and procedures with the specified name

D. Displays an error and cause an abnormal termination.

The correct answer is A.

20

20 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The EXEC parameter field.

Positional parameter coding errors.

JCL errors occur if you, as a JCL

programmer fail to follow any of the

coding rules regarding the PGM and

PROC positional parameters.

For example, the misspelling of PGM

(as PGR) in the EXEC statement

shown here returns a JCL error.

//LA$JOE JOB 3SPO3W,CLASS=B

//STEP1 EXEC PGR=IEFBR14

21

21 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The EXEC parameter field.

Positional parameter coding errors.

In the example shown here, the equal sign in the parameter field is preceded and

followed by a space. The system interprets "PGM" as a procedure name and not as

a keyword for the positional parameter of the EXEC statement.

//LA$JOE JOB 3SPO3W,CLASS=B

//STEP1 EXEC PGM = IEFBR14

SYSTEM ABEND

When this program executes, an error "NOT FOUND" may appear. You can
fix this error by eliminating the spaces before and after the equal sign.

22

22 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Additional EXEC parameters.

Procedures.

In addition to programs, you can use the EXEC statement to invoke
a cataloged procedure, which is a set of JCL statements that you
place in a library and retrieve by its name.

A procedure can contain one or more EXEC statements, with
associated DD statements.

You have already learnt that in a job, you should code one EXEC statement
for each program that you want to execute. Each job step begins with an
EXEC statement that identifies a program name – or procedure name.

23

23 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Additional EXEC parameters.

Are we on track?

A ____________ is a set of associated EXEC and DD statements
stored in a procedure library.

The correct answer is procedure.

24

24 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Additional EXEC parameters.

Keyword parameters.

You may code keyword parameters

on the EXEC statement in any order,

following the program or procedure

name.

You can use any of the keyword

parameters shown here.

If you code one of these keyword

parameters on the EXEC statement,

the keyword parameter value will

apply only to that step.

The two keyword parameters used

most frequently with the EXEC

statement are:

• The PARM parameter.

• The COND parameter.

PGM=PROGA,keyword

ACCT

RD

DYNAMNBR

ADDRSPC

PERFORM

REGION

PARM

COND

TIME

DPRTY

CCSID

You can code certain keyword parameters to code a JOB statement in order
to accomplish a task for the entire job. Some parameters are the same in JOB
and EXEC statements. In that case they are valid for the entire job, or only for
the step.

See the „z/OS MVS JCL Reference“ manual, Overrides section in each
parameter description.

25

25 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The PARM parameter.

The PARM parameter.

What does the PARM parameter do?

The PARM parameter passes information to the executing
program. Some programs accept information from the PARM
parameter about how many times to execute.

For example, a program may need to know whether a report cycle
is "annual" or "monthly".

The records the program uses vary depending on which value is
passed to it.

Similarly, the PARM parameter can supply a password to the
program that is required before the program executes.

The syntax for the PARM parameter is:

PARM=(SUBPARAMETER,SUBPARAMETER)

Use the PARM parameter to pass variable information to the processing
program executed by this job step. To use the information, the processing
program must contain instructions to retrieve the information.

26

26 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The PARM parameter.

Rules for coding the PARM parameter.

The general syntax and rules for coding the PARM parameter are:

• The PARM parameter can include up to 100 characters.

• The PARM parameter can consist of several subvalues separated
by commas.

• Subparameters must be enclosed in parentheses or apostrophes.

• Special characters must be enclosed in apostrophes.

PARM=onehundredcharacters

PARM=(subvalue1,subvalue2)

PARM=(‘subparameter1’,’subparameter2’)

PARM=‘#’

27

27 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The PARM parameter.

Are we on track?

Which EXEC statement keyword parameter passes up to 100
characters of data to a program?

A. COND

B. PERFORM

C. PARM

D. ACCT

The correct answer is C.

28

28 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The PARM parameter.

Coding the PARM parameter – Example 1.

This EXEC statement passes one value (MONTHLY) as input to a program named
REPORT.

//JOB1 JOB 766,SMITH

//RUN#2 EXEC PGM=REPORT,

// PARM=MONTHLY

REPORT

PARM=MONTHLY

PARM
Parameter

29

29 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The PARM parameter.

Coding the PARM parameter – Example 2.

This EXEC statement passes the date (10-31-98) as input to the program called
REPORT. The subparameter is enclosed in apostrophes because special characters
are used.

//JOB1 JOB 766,SMITH

//RUN#2 EXEC PGM=REPORT,

// PARM=’10-31-98’

REPORT

PARM=’10-31-98’

PARM
Parameter

30

30 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The PARM parameter.

Coding the PARM parameter – Example 3.

In this example, the EXEC statement passes both the type of report (MONTHLY) and
the date (10-31-98) as subparameters of the PARM parameter. The two
subparameters are enclosed in parentheses.

//JOB1 JOB 766,SMITH

//RUN#2 EXEC PGM=REPORT,

// PARM=(MONTHLY,’10-31-98’)

REPORT

PARM=(MONTHLY,
’10-31-98’)

PARM
Parameter

31

31 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The PARM parameter.

Are we on track?

Complete the EXEC statement using the PARM parameter to pass
on both the type of report (MONTHLY) and the date (‘10-31-98’).

//JOB1 JOB 776,SMITH
//RUN#3 EXEC PGM=REPORT,_________________

The correct answer is // PARM=(MONTHLY,’10-31-98’)

32

32 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The PARM parameter.

The Loader program.

Occasionally, you might use the LOADER program when testing
programs. The LOADER creates a program module in storage and
passes control to it.

If you are coding the PARM parameter when using the LOADER,
use the special syntax as shown here:

//GO EXEC PGM=LOADER,
// PARM=(loader parameters/user program parameters)

What are the programs to which you can give the PARM parameter
to?

You can give PARM values to two programs:

• The Loader.
• The module created by the Loader.

The slash (/) within the PARM parameter separates the Loader parameters
from those given to the user program.

33

33 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The PARM parameter.

Are we on track?

The ________ creates a program module in storage and passes
control to it. The program then executes.

The correct answer is Loader.

34

34 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The COND parameter.

The COND parameter.

What does the COND parameter do?

To provide control over the whole job, you can code the condition
(COND) parameter on the JOB statement.
You can also code it on the EXEC statement to control an individual
step in the job.

The syntax for the COND parameter is:

COND=(code,operator)

When you use the COND parameter on an EXEC statement, the
parameter specifies the conditions that allow the system to bypass
a step by testing return codes from any or all previous steps.

If the result of any test is true, the system will bypass the step.

Use the COND parameter to test return codes from previous job steps and
determine whether to bypass this job step. You can specify one or more tests
on the COND parameter, and you can test return codes from particular job
steps or from every job step that has completed processing.

If any of the test conditions are satisfied, the system evaluates the COND
parameter as true and bypasses the job step. If none of the test conditions
specified on the COND parameter are satisfied, the system evaluates the
COND parameter as false and executes the job step.

35

35 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The COND parameter.

The COND subparameters.

As on the JOB statement, the code subparameter indicates a
return code, and the operator subparameter indicates the type of
test used for the comparison.

COND=(code,operator)
 or

COND=(code,operator,stepname)
 or

COND=(code,operator,stepname.procstepname)

What happens if you specify only the code and operator
subparameters?

If you specify only the code and operator subparameters, the test
runs for all previous return codes in the job.

stepname

Identifies the EXEC statement of a previous job step that issues the return
code to be used in the test. If you omit stepname, the code you specify is
compared to the return codes from all previous steps. If the return code issued
by any of those previous steps causes the test condition to be satisfied, the
system evaluates the COND parameter as true and bypasses the job step.

stepname.procstepname

Identifies a step in a cataloged or in-stream procedure called by an earlier job
step. Stepname identifies the EXEC statement of the calling job step;
procstepname identifies the EXEC statement of the procedure step that
issues the return code to be used in the test.

36

36 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The COND parameter.

The COND subparameters.

The stepname.procstepname subparameter (instead of the
stepname subparameter) compares a code value against the
return code from a specific previous procedure job step.

The actual return code value, which may range from 0 to 4095, is
compared with the return code specified in the COND parameter.

You can code up to eight comparisons. If any comparison is true,
the system bypasses the step.

The stepname subparameter, if coded, results in comparing the code value
against the return code from a previous job step with the specified stepname.

37

37 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The COND parameter.

COND parameter – an example.

In the example shown here, the COND parameter reads as follows:

"If 8 is greater than the return code, do not execute the EXAMPLE3 step."

The job executes the EXAMPLE3 step only if the RC is 8 or greater. If the RC is 0

through 7, the EXAMPLE3 step will be bypassed.

DELETE

//JOB1 JOB 778,SMITH

//EXAMPLE2 EXEC PGM=DELETE

//EXAMPLE3 EXEC PGM=UPDATE,

// COND=(8,GT)

//DD1 DD DSN=INPUT

COND=(8,GT)

It means:

RC is 0-7: consequently 8 is GT RC consequently bypass the EXAMPLE3 step.

RC is 8: consequently 8 is EQ RC consequently execute the EXAMPLE3 step.

RC is 9: consequently 8 is LT RC consequently execute the EXAMPLE3 step.

Try MCOE.EDU.JCL.JCL(CONDSAMP).

This example is a little unusual. Mostly step is executed if RC is less than...

38

38 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The COND parameter.

Are we on track?

Code a COND parameter that skips this step if any previous step
return code is less than or equal to 8.

//STEP2 EXEC PGM=UPDATE,

The correct answer is COND=(9,GT) or COND=(8,GE).

Look to the example on the previous slide.

39

39 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The COND parameter.

COND parameter – an example.

The COND parameter in the step EXAMPLE3, includes a stepname subparameter.

This causes the COND statement to read as follows:

"If 8 is greater than the return code from step EXAMPLE2, do not execute

the EXAMPLE3 step."

DELETE

//JOB1 JOB 778,SMITH

//EXAMPLE2 EXEC PGM=DELETE

//EXAMPLE3 EXEC PGM=UPDATE,

// COND=(8,GT,EXAMPLE2)

//DD1 DD DSN=INPUT

COND=(8,GT,
EXAMPLE2)

It means:

RC from EXAMPLE2 is 0-7: then 8 is GT RC consequently bypass the EXAMPLE3
step.

RC from EXAMPLE2 is 8: then 8 is EQ RC consequently execute the EXAMPLE3
step.

RC from EXAMPLE2 is 9: then 8 is LT RC consequently execute the EXAMPLE3
step.

Try MCOE.EDU.JCL.JCL(CONDSAMP).

40

40 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The COND parameter.

The COND subparameters – EVEN & ONLY.

In addition to code, operator, stepname, and procedure stepname,
the EVEN and ONLY subparameters may also be coded on the
COND parameter.

These subparameters do not apply to condition codes returned by
a program after normal termination. They relate to abnormal
termination of a prior step. Abnormal termination occurs when
unexpected conditions arise during execution of a step.

Without the use of EVEN or ONLY, a job bypasses all remaining
steps following an abnormal program termination.

The EVEN subparameter allows the current step to execute even if
any previous step terminates abnormally.

Conversely, the ONLY subparmeter allows the current step to
execute only if any previous step terminates abnormally.

EVEN specifies that this job step is to be executed even if a preceding job
step abnormally terminated.

ONLY specifies that this job step is to be executed only if a preceding job
step abnormally terminated.

41

41 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The COND parameter.

EVEN subparameter – an example.

If you code COND=EVEN on an EXEC statement as shown here, the program STEP4

always executes, even if a previous step (e.g. program STEP3) in the job

terminates abnormally.

//JOB1 JOB 778,SMITH

//EXAMPLE1 EXEC PGM=STEP1

//EXAMPLE2 EXEC PGM=STEP2

//EXAMPLE3 EXEC PGM=STEP3

//EXAMPLE4 EXEC PGM=STEP4,

// COND=EVEN

//DD1 DD DSN=INPUT

42

42 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The COND parameter.

ONLY subparameter – an example.

If you code COND=ONLY on an EXEC statement as shown here, the program STEP4

will execute only if a previous step in the job terminates abnormally.

//JOB1 JOB 778,SMITH

//EXAMPLE1 EXEC PGM=STEP1

//EXAMPLE2 EXEC PGM=STEP2

//EXAMPLE3 EXEC PGM=STEP3

//EXAMPLE4 EXEC PGM=STEP4,

// COND=ONLY

//DD1 DD DSN=INPUT

43

43 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The COND parameter.

Using the EVEN & ONLY subparameters.

The EVEN and ONLY subparameters

cannot appear on the same step.

They are mutually exclusive.

However, EVEN or ONLY can be

coded in place of one of the eight RC

test allowed for each step. The order

in which tests are coded does not

matter.

For example, the two EXEC

statements shown here mean the

same thing.

//ST4 EXEC PGM=PROG7,

// COND=((10,EQ,STEP5),EVEN)

//ST4 EXEC PGM=PROG7,

// COND=(EVEN,(10,EQ,STEP5))

If a job step terminates abnormally, the system bypasses all subsequent steps
unless they have been coded with an EVEN or ONLY subparameters on the
COND parameter.

44

44 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The COND parameter.

Are we on track?

Which one of the following statements would you code to run the
FIXIT program only in case of an abnormal termination in the
previous step?

A. //STEP EXEC PGM=FIXIT

B. //STEP3 EXEC PGM=FIXIT,COND=EVEN

C. //STEP3 EXEC PGM=FIXIT,COND=ONLY

The correct answer is C.

45

45 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The system library.

Program libraries.

In a job, each job step begins with an EXEC statement that
identifies a program name. In order to run the program in the
EXEC statement, the system searches for it in program libraries.

It will search one or more system program libraries automatically
or you can direct the system to search for the program in a private
program library.

46

46 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The system library.

Steps involved in invoking a program.

When a job step requests a program, the system searches for the
program in a system library named SYS1.LINKLIB or in a list of
libraries that the installation has defined in a PARMLIB member
called LINKLIST.

LINKLIST is installation dependent and can include a number of
data sets with loadable programs searched by default.

Once the system finds a program in the SYS1.LINKLIB or any
library in LINKLIST, it invokes the program.

If the system cannot find the program, it will generate an
abnormal termination (or abend) when you try to run the job.

See SYS1.PARMLIB(LNKLSTM00) as an example of linklist member:

SYS2.XAD1.LINKLIB, SYSTEMS PROGRAMMING MVS/XA
STEPLIB

SYS1.V1R3M0.SHASLINK, JES2

SYS1.V1R3M0.SHASMIG, JES2

ISP.SISPLOAD, ISPF

ISF.SISFLOAD, SDSF

ISF.SISFLINK, SDSF

CEE.SCEERUN, LE/370 RUNTIME

IGY.V1R2M0.SIGYCOMP, AD/CYCLE COBOL COMPILER

EDC.V1R2M0.SEDCDCMP, AD/CYCLE C/370

SYS2.CMDLIB, SYSTEMS PROGRAMMING TSO
COMMAND LIBRARY

SYS1.CMDLIB, IBM TSO COMMAND LIBRARY

SYS2.XDC32.LINKLIB, XDC LINKLIB

SYS2.LINKLIB, SYSTEMS PROGRAMMING LIBRARY

FATS.LINKLIB, FATAR FOR RPLUS PEOPLE

etc.....

47

47 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The system library.

Program libraries – an example.

In the example, the programmer

wanted to execute a program called

REPORT and coded the JCL as

shown.

The operating system searches

SYS1.LINKLIB or LINKLIST for

REPART. The error messages shown

occur because REPORT was

misspelled as REPART in the JCL.

//RUN31 JOB 777,CLASS=B

//STEPA EXEC PGM=REPART

CSV003I REQUESTED MODULE REPART NOT
FOUND

CSV028I JOBNAME=RUN31 STEPNAME=STEPA

Error Message

CSV003I REQUESTED MODULE REPART NOT FOUND

Explanation:

The system could not find the module entry point, mod, that a LINK, XCTL,
ATTACH, or LOAD macro specified. This can result from having an alias
which is not associated with an existing primary name, or an alias that
matches a primary name in another concatenated library.

48

48 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The system library.

Private program libraries.

You can use private libraries to

store programs.

If you want to invoke a program

called MYPROG which is stored

in a private library, you must tell

the operating system the name

of the private library by coding a

special DD statement named

JOBLIB before the first EXEC

statement in the job.

The JOBLIB DD statement

causes the system to search a

private library before searching

SYS1.LINKLIB.

//JOB1 JOB 776,SMITH

//JOBLIB DD DSN=LIBRARY,

// DISP=SHR

//STEP1 EXEC PGM=MYPROG

If the system does not find the program in the library specified by the JOBLIB
DD statement, then it goes on to search the SYS1.LINKLIB and the libraries
defined in LINKLIST next. This search sequence repeats for every step in the
job.

Use the JOBLIB DD statement to identify a private library that the system is to
search for the program named in each EXEC statement PGM parameter in
the job. Only if the system does not find the program in the private library,
does it search the system libraries.

Syntax

//JOBLIB DD parameter[,parameter]... [comments]

49

49 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The system library.

Are we on track?

From the code determine which library the system would search
first for UTILITY.

A. SMITHLIB private library.

B. SYS1.LINKLIB or LINKLIST.

C. USER1 private library.

//MYJOB1 JOB 514,SMITH

//JOBLIB DD DSN=USER1

//STEP1 EXEC PGM=UTILITY

The correct answer is C.

50

50 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The STEPLIB DD statement.

The STEPLIB DD statement.

If most of the programs for a job

reside in SYS1.LINKLIB or LINKLIST

and only a few are in private

libraries, it makes more sense to

direct the system to search a private

library on a step-by-step basis.

This saves processing time by

eliminating unnecessary searching.

To search a private library directly

you use a special DD statement

called STEPLIB DD statement as

shown.

//STEP1 EXEC PGM=PROGA

//STEPLIB DD DSN=MYLIB,DISP=SHR

The STEPLIB DD statement can be placed anywhere in a job step but it
typically appears after an EXEC statement.

Use the STEPLIB DD statement to identify a private library that the system is
to search for the program named in the EXEC statement PGM parameter. If
the system does not find the program in the private library, only then does the
system search the system libraries.

The private library is a partitioned data set (PDS) on a direct access device.
Each member is an executable, user-written program.

Syntax

//STEPLIB DD parameter[,parameter]... [comments]

51

51 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The STEPLIB DD statement.

Comparison between JOBLIB and STEPLIB DD statements.

Just like a JOBLIB DD statement, the

STEPLIB DD statement searches a

private library for a specified

program.

But, the STEPLIB DD statement is in

effect only for the duration of the

step it follows.

//JOB1 JOB 777,SMITH

//STEP1 EXEC PGM=PROGA

//STEP2 EXEC PGM=MYPROG

//STEPLIB DD DSN=LIBRARY,

// DISP=SHR

//STEP3 EXEC PGM=PROGB

Continued…

In the example, when executing STEP1, the system will search in
SYS1.LINKLIB and LINKLIST for PROGA.

But when executing STEP2, the system will look first in the private library
named LIBRARY for MYPROG, ignoring SYS1.LINKLIB and LINKLIST. If it
does not find MYPROG in LIBRARY it will search in SYS1.LINKLIB and
LINKLIST.

And in STEP3 the system will look for PROGB in SYS1.LINKLIB and
LINKLIST but not in LIBRARY.

52

52 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

The STEPLIB DD statement.

Comparison between JOBLIB and STEPLIB DD
statements.
What if a STEPLIB and JOBLIB

both appear in a job?

In this case the STEPLIB overrides

the JOBLIB. The system ignores

JOBLIB and does not search it in the

step.

If the system does not find the

program in library specified by the

STEPLIB, it searches the system

libraries (SYS1.LINKLIB and

LINKLIST) next.

If it does not find the program there,

the job step abends.

//JOB1 JOB 77,SMITH
//JOBLIB DD DSN=USER1,
// DISP=SHR

//STEP1 EXEC PGM=MYPROG
//STEPLIB DD DSN=LIBRARY,
// DISP=SHR

53

53 Copyright © 2006 CA. All trademarks, trade names, services marks and logos referenced herein belong to their respective companies.

Coding EXEC statements.

Unit summary.

Now that you have completed this unit, you should be able to:

• Code an EXEC statement to specify a program to be executed.

• Correct coding errors in an EXEC statement.

• Identify which JCL statement has caused a “PROGRAM NOT
FOUND” error message.

• Identify the system library from which programs are retrieved at
execution time.

• Identify the DD statement names used to specify a private library
from which programs are retrieved at execution time.

• Select the place in the job stream where STEPLIB and JOBLIB DD
statements should be located.

• Code a JOBLIB DD statement.

We did not mention every parameters the EXEC statement can have. For
more information see IBM books:

„z/OS MVS JCL Reference“ and „z/OS MVS JCL User’s Guide“.

	 JCL Chapter a3 Coding EXEC statements
	Job Control Language
	Snímek 3
	Snímek 4
	Coding EXEC statements
	Snímek 6
	The EXEC statement
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	The EXEC statement.
	Snímek 13
	The EXEC parameter field.
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Snímek 20
	Snímek 21
	Additional EXEC parameters.
	Snímek 23
	Snímek 24
	The PARM parameter.
	Snímek 26
	Snímek 27
	Snímek 28
	Snímek 29
	Snímek 30
	Snímek 31
	Snímek 32
	Snímek 33
	The COND parameter.
	Snímek 35
	Snímek 36
	Snímek 37
	Snímek 38
	Snímek 39
	Snímek 40
	Snímek 41
	Snímek 42
	Snímek 43
	Snímek 44
	The system library.
	Snímek 46
	Snímek 47
	Snímek 48
	Snímek 49
	The STEPLIB DD statement.
	Snímek 51
	Snímek 52
	Coding EXEC statements.

